Summary of June sucker mineral analysis Summer 2004

Two samples, bone (Table 1.) and liver (Table 2.), were acquired from June sucker collected from three locations, Red Butte Reservoir, Camp Creek Reservoir, and the Fisheries Experiment Station (FES) for a total of five treatments. Bone samples consisted of a section of vertebrae and whole ribs. Liver samples were sub-samples from the larger fish, and the entire liver was collected from the smaller fish.

- Treatment 1: Red Butte Reservoir. Seven adult fish were sampled from fresh mortalities occurring due to handling stress.
- Treatment 2: Camp Creek Reservoir. Five adult/sub-adults fish were sampled during a fish health inspection.
- Treatment 3: FES 1. Three fish (<200 mm) were randomly selected from 2002 lot 8. Fish #1 exhibited scoliosis, lordosis and deformed opercles. Fish #2 exhibited severe right and mild left opercle shortening.

Fish #3 had mild opercle shortening.

Treatment 4: FES 2. Three fish (<100 mm) selected with deformities from 2003 Lot 22. Fish #1 exhibited lordosis; the liver was not analyzed due to an insufficient sample size.

Fish #2 exhibited mild opercle shortening and a cranial lesion.

Fish #3 exhibited severe unilateral opercle shortening and did not have caudal or dorsal fins.

Treatment 5: FES 3. Three fish (<100 mm) selected without deformities from 2003 lot 22.

The 2002 and 2003 fish were used because they were both on the more successful feed regime tested to date: brine shrimp and the razorback diet since initial feeding. Red Butte and Camp Creek samples were held on ice in the field. Samples were frozen post collection until all samples were received for processing.

The Utah Division of Wildlife Resources, Fisheries Experiment Station staff collected the bone and liver samples. The Utah Veterinary Diagnostic Laboratory in Logan, Utah performed the ICP-MS Mineral Analysis. The samples were digested in trace mineral grade nitric acid under heat. The digests were then diluted with ultra-pure water to a final nitric acid content of 5%, which provided a matrix match for the analytical standards. The prepared samples were analyzed by ICP-MS and assessed against concentration curves of known standards. Standard curves and quality control samples were analyzed every five samples. Results are reported in parts per million. FES staff analyzed the results in SPSS, using ANOVA with a 95% confidence interval.

One thing to consider with these results is the difference in fish size and age. FES fish were 1 and 2 year olds and <200 mm where as the other sample sites were adult and sub-adult fish (exact age not determined). Another observation is that some of the cultured fish at FES seem to exhibit exothalmia to the on-site fish health biologists, gas level was found to be acceptable and there is no indication of a bacterial infection. This symptom has been shown to be a sign of phosphorus or vitamin A deficiencies in carp by The National Research Council publication in 1977 on the Nutrient Requirements of

Warmwater Fishes. A few elements that stood out while processing the data were Ca, P, Mg & Mn in bone samples and Fe in liver samples.

-	ice p=0.05.				
Element	Red Butte	Camp Creek	FES 1	FES 2	FES 3
Ag	0.02 _{zy}	0.02 _{zy}	0.01 _{zy}	0.04 _z	0.00 _y
SD	0.01	0.01	0.01	0.06	0.00
AI	1.12 _y	2.89 _z	0.54 _y	1.25 _y	1.25 _y
SD	0.55	1.32	0.38	0.47	0.68
As	0.12 _z	0.10 _{zy}	0.04 _{zy}	0.06 _{zy}	0.01 _y
SD	0.06	0.05	0.04	0.10	0.01
В	0.13 _y	1.01 _z	0.03 _y	0.07 _y	0.00 _y
SD	0.17	0.59	0.06	0.12	0.00
Ва	12.30 _y	50.32 _z	1.18 _y	1.51 _y	1.02 _y
SD	3.78	19.61	1.00	0.38	0.33
Be	0.00 _y	0.00 _y	0.00 _y	0.01 _z	0.01 _z
SD	0.00	0.00	0.00	0.00	0.01
Ca	160,931.00 _z	154,158.00 _z	41,377.60 _y	26,682.40 _y	19,641.90 _y
SD	8,059.38	9,109.12	44,937.58	3,186.30	8,834.68
Cd	0.01 _y	0.05 _z	0.00 _y	0.00 _y	0.01 _{zy}
SD	0.01	0.01	0.00	0.01	0.01
Co	0.41 _z	0.39 _z	0.08 _y	0.05 _y	0.04 _y
SD	0.08	0.03	0.08	0.02	0.02
Cr	0.40 _y	0.57 _{zy}	1.36 _{zy}	0.79 _{zy}	1.93 _z
SD	0.18	0.21	1.22	0.39	2.25
Cu	0.72 _z	0.37 _z	0.24 _z	0.62 _z	0.53 _z
SD	0.86	0.11	0.12	0.21	0.08
Fe	1,137.68 _z	1,046.82 _z	188.28 _y	122.78 _y	124.25 _y
SD	206.87	75.54	192.16	29.71	73.71
K	2,137.67 _{yx}	3,483.37 _z	1,687.78 _x	3,298.92 _z	3,149.65 _{zy}
SD	549.77	891.05	1,168.10	238.48	175.77
Li	0.23 _y	0.36 _z	0.07 _x	0.06 _x	0.03 _x
SD	0.02	0.06	0.06	0.02	0.01
Mg	3,052.89 _z	2,566.96 _y	689.58 _x	577.15 _x	481.30 _x
SD	313.08	116.48	686.07	23.34	109.41
Mn	53.19 _z	75.45 _z	1.53 _y	1.67 _y	1.24 _y
SD	25.27	26.66	1.66	0.16	0.36
Мо	0.09 _z	0.08 _z	0.05 _z	0.16 _z	0.00 _z
SD	0.08	0.06	0.05	0.26	0.00
Na	3,534.65 _z	3,424.86 _z	1,191.99 _y	1,146.42 _y	966.15 _y
SD	269.29	492.21	1,028.41	154.41	225.31
Ni	0.35 _z	0.32 _z	0.07 _y	0.25 _{zy}	0.07 _y
SD	0.09	0.06	0.06	0.28	0.03
Р	85,582.40 _z	80,825.20 _z	32,712.50 _y	15,699.10 _x	12,202.50 _x
SD	4,848.93	3,665.74	14,057.57	1,055.20	4,462.68

Table 1. Comparison of individual mineral levels in June sucker bone samples. Matching subscripts depict no significant difference for a given element. Level of significance p=0.05.

Pb	0.28 _{zy}	0.69 _z	0.02 _y	0.04 _y	0.04 _y
SD	0.28	0.58	0.01	0.03	0.02
Sb	0.02 _z	0.02 _z	0.01 _z	0.03 _z	0.00 _z
SD	0.02	0.02	0.01	0.04	0.00
Se	1.32 _z	0.79 _y	0.20 _x	0.27 _x	0.28 _x
SD	0.46	0.20	0.13	0.07	0.00
Si	18.68 _y	37.53 _z	13.22 _y	15.97 _y	19.06 _y
SD	5.00	3.06	8.32	3.44	1.73
Sn	0.01 _z	0.13 _z	0.00 _z	0.00 _z	0.00 _z
SD	0.02	0.27	0.00	0.01	0.01
Sr	394.16 _z	271.49 _y	69.55 _x	40.15 _x	30.81 _x
SD	122.40	74.15	75.13	3.48	12.26
Ti	0.00 _y	0.01 _{zy}	0.00 _{zy}	0.01 _{zy}	0.01 _z
SD	0.00	0.00	0.01	0.01	0.00
V	0.63 _z	0.56 _z	0.05 _y	0.02 _y	0.08 _y
SD	0.27	0.21	0.03	0.02	0.06
Zn	68.20 _z	64.99 _z	23.84 _y	44.21 _{zy}	29.91 _y
SD	22.29	22.05	11.11	4.83	5.07

Table 2. Comparison of individual mineral levels in June sucker liver samples.
Matching subscripts depict no significant difference for a given element. Level of
significance p=0.05.

significant	ср 0.05.					
Element	Red Butte	Camp Creek	FES 1	FES 2	FES 3	
Ag	0.037 _y	0.376 _z	0.077 _{zy}	0.070 _{zy}	0.090 _{zy}	
SD	0.026	0.374	0.031	0.099	0.017	
AI	1.155 _y	1.978 _y	2.400 _{zy}	7.390 _{zy}	32.083 _z	
SD	1.106	1.830	2.073	1.923	47.155	
As	0.174 _{zy}	0.160 _{zy}	0.223 _z	0.230 _{zy}	0.000 _y	
SD	0.108	0.039	0.194	0.283	0.000	
В	0.057 _y	0.135 _y	1.913 _{zy}	0.300 _y	4.357 _z	
SD	0.061	0.126	2.570	0.424	4.666	
Ва	0.174 _z	0.128 _{zy}	0.017 _y	0.120 _{zy}	0.103 _{zy}	
SD	0.116	0.122	0.012	0.057	0.091	
Be	0.001 _y	0.002 _z	0.000 _y	0.000 _y	0.000 _y	
SD	0.001	0.001	0.000	0.000	0.000	
Са	151.372 _z	71.466 _z	56.953 _z	157.235 _z	88.637 _z	
SD	103.813	21.933	13.477	130.426	48.532	
Cd	0.104 _y	0.420 _z	0.020 _y	0.055 _y	0.057 _y	
SD	0.088	0.353	0.000	0.007	0.025	
Co	0.056 _y	0.113 _z	0.013 _x	0.025 _{yx}	0.033 _{yx}	
SD	0.026	0.028	0.006	0.007	0.023	
Cr	0.221 _{zy}	0.327 _z	0.197 _{zy}	0.085 _y	0.013 _x	
SD	0.116	0.042	0.131	0.120	0.023	
Cu	39.101 _z	50.598 _z	20.357 _z	30.020 _z	25.900 _z	
SD	28.870	42.042	2.778	37.222	7.836	
Fe	711.008 _{zy}	960.644 _z	47.763 _y	42.135 _{zy}	17.320 _y	

SD	615.758	721.513	10.911	1.563	14.878
К	1,561.640 _v	2,826.600 _z	2,840.100 _z	3,048.540 _z	2,668.540 _z
SD	692.115	198.192	41.809	340.373	389.528
Li	0.010 _y	0.012 _y	0.040 _{zy}	0.055 _{zy}	0.090 _z
SD	0.004	0.008	0.027	0.007	0.090
Mg	167.871 _z	184.613 _z	154.213 _z	255.655_z	166.823 _z
SD	92.436	18.339	1.984	118.957	18.560
Mn	1.798 _z	1.928 _z	1.220 _z	1.520 _z	1.217 _z
SD	0.920	0.743	0.089	0.269	0.310
Мо	0.263 _y	0.328 _{zy}	0.637 _{zy}	0.050 _y	0.967 _z
SD	0.133	0.153	0.601	0.042	0.960
Na	866.435 _z	1,016.600 _z	855.160 _z	1,119.740 _z	827.553 _z
SD	463.984	138.030	49.292	162.055	97.570
Ni	0.032 _x	0.059 _{zyx}	0.043 _{yx}	0.160 _z	0.143 _{zy}
SD	0.014	0.012	0.023	0.156	0.112
Р	3,199.420 _z	3,863.070 _z	2,376.160 _z	2,831.130 _z	2,458.570 _z
SD	1,732.592	342.985	85.721	244.221	296.070
Pb	0.029 _y	0.111 _{zy}	0.140 _{zy}	0.100 _{zy}	0.350 _z
SD	0.027	0.077	0.199	0.057	0.511
Sb	0.014 _y	0.029 _y	0.053 _{zy}	0.000 _y	0.173 _z
SD	0.009	0.007	0.084	0.000	0.205
Se	2.392 _z	1.624 _{zy}	0.620 _y	0.395 _y	0.423 _y
SD	1.209	0.334	0.252	0.177	0.174
Si	35.992 _z	59.630 _z	32.017 _z	36.110 _z	49.853 _z
SD	20.818	20.162	2.931	5.8548	30.980
Sn	0.004 _y	0.007 _y	0.013 _{zy}	0.010 _{zy}	0.070 _z
SD	0.002	0.014	0.006	0.014	0.104
Sr	0.502 _z	0.160 _z	0.143 _z	0.520 _z	0.217 _z
SD	0.379	0.117	0.046	0.509	0.133
Ti	0.004 _y	0.005 _y	0.013 _{zy}	0.020 _z	0.020 _z
SD	0.002	0.002	0.006	0.000	0.017
V	0.127 _{zy}	0.252 _z	0.017 _y	0.030 _{zy}	0.000 _y
SD	0.087	0.216	0.015	0.042	0.000
Zn	59.822 _z	62.493 _z	25.343 _z	34.085 _z	33.343 _z
SD	38.416	21.799	1.162	9.185	7.971

Eriek Hansen Utah Division of Wildlife Resources, Fisheries Experiment Station 1465 West 200 North Logan, UT 84321 435-752-1066 ext. 19 eriekhansen@utah.gov