
     We consider the term ‘fine scale’ to describe 
small areas occupied by one population or sub-
population.  Models at this scale may attempt 
to incorporate a high degree of detail in the 
processes that lead to transmission of disease, 
including parameters that define both direct 
and indirect transmission, seasonal or age-
specific effects on vital rates, and a detailed 
representation of movement and aggregation 
patterns.  At a fine scale, the processes that de-
termine CWD transmission may be revealed by 
comparing results from models that differ in 
transmission function, spatial connection, or 
social structure to observed data.  For CWD, 
most data that can be used to infer mechanisms 
of transmission come from observations of dis-
ease dynamics of captive herds (Miller et al. 

2006), which represents a very fine scale and 
resolution (detail) of data. 
 
     Although mathematical models contain un-
ambiguous assumptions, subjective decisions 
the appropriate scale and level of detail may 
still be required.  For example, researchers 
must decide how to model transmission (e.g., 
direct, indirect, horizontal, vertical, etc.) as 
well as the appropriate functional relationship 
between population density and transmission 
(i.e., density or frequency dependent).  Deci-
sions involving the level of detail for modeling 
population and demographic processes are also 
required.  At fine scales, models are frequently 
age or stage structured, transmission is explic-
itly represented, and population processes 

Approaches to Fine-Scale Modeling  

A hypothetical conceptual model for an individual-based spatially explicit model for chronic wast-
ing disease. Black diamonds represent more complex decision rules based on the current conditions 
of the model and model parameters (see focal approach for more details on IBMs). 
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(e.g., birth, mortality, etc.) are often included, 
particularly for diseases where on a similar 
timescale as birth and death.  In addition to the 
effect of disease on population performance, 
the model may explicitly limit population size 
via density dependence, harvest, and/or density 
independent processes.  Data required to relia-
bly estimate model parameters are more often 
available at the level of a single population or 
finer scale and are rarely available at broader 
spatial scales.  

At a variety of 
scales, many models 
of disease dynamics 

will divide the host population into categories 
of susceptible, infected, and recovered (SIR) 
(e.g., Anderson and May 1979, Anderson and 

May 1991, Hudson et al., 2001), where recov-
ered can indicate removal from the susceptible 
pool through acquired immunity (Figure 3.1A).  
We note that for CWD, the appropriate com-
partment model is a SI (Figure 3.1B) because 
animals do not recover.  SIR-type models have 
led to a broad range of important insights to 
disease dynamics and control strategies during 
the last 80 years (Kermack and McKendrick 
1927, Bartlett 1957, May and Anderson 1978, 
Anderson 1979, Hudson et al. 2001).  The ba-
sic SIR model structure has been expanded to 
accommodate many complex details, including 
latent periods between infection and infec-
tiousness, age and sex structure, individual 
variation in susceptibility and infectiousness, 
and spatial/social structure (Figure 3.2).  More-
over, for modeling CWD, an environmental 
reservoir can easily be included in these SIR-
type models (Figure 3.1B).  Compartmental 

Figure 3.1 Compartments and traditional differential equations for (A) generalized SIR model and (B) 
CWD adaptation. 
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SIR models can be deterministic or stochastic, 
spatial or non-spatial, and composed of differ-
ence or differential equations.  Statistical esti-
mation via likelihood theory can be used to 
estimate model parameters, while model selec-
tion methods, such as Akaike’s Information 
Criterion or Bayesian Information Criterion, 
can be used to compare and evaluate support 
for competing SIR model structures.  SIR mod-
els that are composed of a relatively small 
number of differential equations may be solved 
using analytical tools.  When additional details 
are added to SIR models, it quickly becomes 
more difficult to find analytical solutions, esti-
mate model parameters, and evaluate the level 
of support for different model structures.  As a 
result, researchers usually explore more com-
plicated model structures via computer simula-
tion.  Simulation and randomization techniques 
can be used to model more complicated struc-
tures or to evaluate the effects of stochasticity 
in various model parameters. 
 
     Compartment models have been used to 
evaluate potential control and transmission of 
CWD.  Hobbs (2006) constructed a relatively 
simple compartment model to explore the po-
tential of a predator (e.g., large carnivore) that 
selectively fed on CWD-infected elk to control 
or eradicate the disease.  The model showed 
that under circumstances thought to be within 
the bounds of realistic parameter estimates, a 
small positive selection for infected elk would 
have a large influence on prevalence of CWD.  

In another example, Miller et al. (2006) con-
structed a set of six compartment models that 
varied in complexity and in potential routes of 
transmission. Beyond the basic SIR structure, 
model complexity varied by including (or not 
including) a latent period, indirect transmis-
sion, and an incubation period.  They fitted 
model parameters to observations from two 
epidemics in captive herds of mule deer, using 
information criteria to identify the models that 
best matched observation. Model results for 
the two epidemics in captive herds best sup-
ported a model that included only indirect 
transmission, substantiating empirical evidence 
for environmental transmission of CWD in 
mule deer (Miller et al. 2006).  Transmission 
rates estimated by Miller et al. (2006) are 
likely much greater than those in free-ranging 
deer, and they thus provide an upper bound for 
modeling CWD transmission and spread over 
larger spatial scales.  Results from this and sev-
eral other studies suggest the role of an envi-
ronmental reservoir of infection.  This environ-
mental reservoir should be considered in the 
construction of SIR-type models of CWD as 
well as several of the other modeling methods 
we discuss in this text.  
 
     Compartmental models cover an exception-
ally broad range of model types, as evidenced 
by Anderson and May’s (1991) 700 page book, 
which focuses on models based on SIR-type 
structures. It is thus neither possible nor useful 
to describe all the kinds of questions that can 
be addressed with these models. In general, 
compartmental models are most suited to large 
populations, where aggregate behaviors ade-
quately account for disease and population dy-
namics.  Problems with demographic and/or 
disease stochasticity may arise when host 
populations are small or disease is uncommon.   
Compartmental models that are not individual-
based and assume that all individuals are equal 
within their particular disease category are of-
ten not suited to simulating dynamics where 
the attributes or behavior of individuals are 
important (e.g., where there are socially domi-
nant animals, or where movement patterns are 
highly heterogeneous).  Compartment models 

Figure 3.2. Elaborations of traditional SIR 
models of disease transmission. Adapted from 
Ferguson et al. (2003). 
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may need to be individual-based where the 
number of infectious individuals is small, the 
spatial scale is small, or where there is consid-
erable and important heterogeneity between 
individuals.   
 
Questions addressed / model predictions: 
1. Predicts R0, (the average number of secon-

dary cases that arise from a single case at 
the start of a disease outbreak) and associ-
ated disease dynamics, including rates of 
flux between groups of susceptible, in-
fected, and recovered (or dead).   

2. Depending on model detail, compartmental 
models can address dynamics of disease 
with latent periods. 

3. Estimates rates of spatial spread of disease. 
4. Facilitates evaluation of types and relative 

importance of models and mechanisms of 
transmission. 

5. Estimates threshold population size for per-
sistence of disease. 

 
Data required: 
1. Data requirements are highly dependent on 

model structure and level of detail.  Mini-
mal requirements would include data on 
the proportion of the population in each 
class (susceptible, infected, or recovered) 
over time.  

2. For highly detailed compartment models, 
additional data may be required on move-
ment rates, sex and age composition, dis-
ease state, on social contacts, effects of in-
fection on vital rates, factors related to dis-
ease resistance, effects of environmental 
contamination levels, and population 
demographic processes. 

 
Output: 
1. A minimal set of outputs would be the 

number of individuals in each disease class 
of susceptible, infected, and recovered or 
dead at each time step. With further embel-
lishment, parameters can be fit to data to 
estimate such things as latency period, 
number of infectious contacts, mode of 
transmission, a threshold population size 
below which the disease cannot persist (if 

any), rate of spread, and many other attrib-
utes. 

 
General usefulness: 
     Compartment models provide a versatile 
and well understood approach to modeling dis-
eases, especially at a fine scale. Mathematical 
techniques for estimating parameters and ana-
lyzing model behaviors are generally known, 
and this knowledge greatly facilitates model 
construction and evaluation. The ability to use 
analytical mathematical techniques to fully un-
derstand model dynamics makes these models 
particularly suitable for exploring the potential 
effects of management actions. 
 
Usefulness to CWD modeling and/or manage-
ment: 
     Compartment models can be extremely use-
ful for modeling transmission and dynamics of 
CWD.  In particular, simple models can be 
quickly and easily constructed to simulate and 
evaluate the effects of assumptions such as 
transmission mode and rate, control or eradica-
tion strategies, and population processes. 
Anderson and May (1991) provide a compen-
dium of compartment model structures and a 
wide range of applications. 

Individual based 
models (IBM) ex-
plicitly represent 

each individual in one or more populations.  In 
an IBM, individuals are typically characterized 
by their sex, age, disease status, and other rele-
vant characteristics that can include physio-
logical state, genetic constitution, reproductive 
condition, resistance to disease, membership in 
a social group, propensity to migrate, etc.  
Bonabeau (2002) noted that individual, or 
agent-based, models are likely to be appropri-
ate when: 
 
• Individual attributes likely to affect disease 

dynamics are highly heterogeneous. 
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• Transitions are non-linear and may be char-
acterized by threshold of behavior (e.g., 
sudden long-range jumps). 

• The focus is on initial stages of disease in-
vasion, or when the disease is at low preva-
lence such that the discrete nature of indi-
viduals and stochasticity are important to 
the ultimate dynamics of the disease. 

• Interactions between individuals are het-
erogeneous (e.g., via social or mating 
structure) and these interactions result in 
large deviations from a predicted aggregate 
behavior. 

• Averages are inappropriate and exceptional 
or rare events are important (e.g., a rare 
infection that leads to an epidemic). 

 
     These traits are characteristic of most natu-
ral animal populations, and they may be very 
important at some spatial scales.  A key advan-
tage of IBMs over many state-variable models 
(i.e., models that aggregate individual into 
large, homogeneous classes such as females 
and males) is the potential ability to model the 
attributes of individuals and the mechanisms 
by which individuals interact with their envi-
ronment. By so doing, IBMs do not require 
simplifying assumptions that we know are 
false. By contrast, many state-variable models 
require estimation of parameters that operate 
over broad spatial and temporal scales – meas-
urements that are frequently difficult and ex-
pensive, to obtain, and that are estimated with 
wide confidence intervals.  Model structure 
and model parameters in IBMs are generally 
easy to interpret, and to explain to non-
technical audiences.  Huston et al. (1988), 
DeAngelis and Gross (1992), and Grimm and 
Railsback (2005) provide more comprehensive 
descriptions of IBMs and their applications. 
 
     By concept, IBMs can be very simple and 
require only a few easily-measured parameters.  
However, it is very easy for modelers to con-
struct highly detailed IBMs and there is often a 
tendency to do so.  Highly detailed IBMs of 
CWD may be useful for scenario analyses, but 
they may also be impossible to validate be-
cause they will likely require estimating a large 

number of poorly know parameters.  With 
complex IBMs, interactions between functions 
and individuals can lead to substantial difficul-
ties in attempts to directly relate changes in-
puts to changes in model behavior. IBMs are 
generally not suitable for analytical analyses, 
and a key step in model development is to con-
duct a comprehensive sensitivity analysis. 
 
     As both the spatial scale and number of ani-
mals increase, simpler models may adequately 
mimic system dynamics.  Recent research, 
however, has shown the importance of individ-
ual variation in disease dynamics (Lloyd-Smith 
et al. 2005a).  Many disease models, particu-
larly those of microparasitic infections (e.g. 
bacteria and viruses), assume that all individu-
als are the same with respect to their infec-
tiousness and susceptibility.  For sexually-
transmitted and vector-borne infections there 
have been many studies illustrating wide varia-
tion in individual contact rates (Kretzschmar 
2000, Liljeros et al. 2001, Eames and Keeling 
2004).   
 
     This led to the concept of a general 80-20 
rule, whereby 80% of infections are likely to 
be caused by only 20% of the infectious indi-
viduals (Woolhouse et al. 1997, Woolhouse et 
al. 2005).  Lloyd-Smith et al. (2005b) showed 
that for human microparasitic diseases, a large 
skew in the number of infections caused by 
different individuals was common and even 
more skewed than what would be expected 
from the 80-20 rule.  These highly infectious 
individuals, the superspreaders, are likely to 
play a large role in the disease dynamics, and 
this individual heterogeneity is easily incorpo-
rated into IBMs.  Theoretical modeling sug-
gests that disease systems with a large degree 
of heterogeneity in individual infectiousness 
are more likely to go extinct, but if they do 
persist they tend to have more explosive dy-
namics.  Furthermore, control efforts focused 
on superspreaders are much more effective 
than control measures that are broadly applied 
to the entire host population (Lloyd-Smith et 
al. 2005b).  At this point, there are no data on 
contact rates and the infectiousness of different 
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individuals for CWD.  However, the variation 
in prevalence among different sex and age 
groups (Miller et al. 2000, Miller and Conner 
2005), as well as potential differences in ge-
netic susceptibility (Jewel et al. 2005), suggest 
that substantial individual variation may also 
exist in CWD systems. 
 
     Gross and Miller (2001) and Cary (2004) 
constructed IBMs to explore dynamics of 
CWD in deer populations, the former in Colo-
rado mule deer and the later in Wisconsin 
white-tailed deer.  The Colorado model was 
non-spatial and simulated CWD dynamics in a 
single, closed population, whereas the Wiscon-
sin model included a high degree of detail on 
small-scale movements of deer in an agricul-
tural landscape.  These differences in model 
detail reflected the relative availability of data 
from the two regions and the types of questions 
the models were designed to address. Both 
models were developed to evaluate the effects 
of a range of potential management options to 
control or eradicate CWD. 
 
     A comparison of the IBMs developed by 
Gross and Miller (2001; hereafter G-M) and 
Cary (2004; hereafter Cary) is a useful illustra-
tion of alternative approaches to model devel-
opment.  The G-M model was specifically de-
veloped to examine potential impacts of CWD 
on mule deer populations in the endemic areas 
of Colorado.  Relatively good data on the indi-
vidual epidemiology of CWD were available 
from captive animal studies, but similar to 
many wildlife disease systems few data were 
available on naturally infected populations and 
individuals. Model construction and parameter 
estimation and evaluation reflected the paucity 
of data and the need to broadly explore model 
behavior.  The non-spatial IBM simulated a 
single population, and incorporated a simple 
frequency-dependent, random-mixing social 
structure for disease transmission, to broadly 
explore model behavior.  Results were pre-
sented for a wide, but realistic, range of pa-
rameter values, and only general (versus spe-
cific) model dynamics were discussed.  Simu-
lations showed that all realistic sets of parame-

ters eventually caused dramatic declines in 
deer populations, and that all disease control 
strategies would require intensive, long-term 
commitments and resource investments.   
 
      By contrast, the Cary model included a 
highly detailed spatial representation of the 
study area, and estimates of model parameters 
were based on a broader range of studies of 
deer biology, harvest data, and a very detailed 
land classification map.  Nonetheless, the level 
of detail in this model required estimating 
many parameters for which there was rela-
tively little data.  The spatial extent of the 
model was explicit and consisted of 20736 grid 
cells, each representing 0.65 km2 (i.e., 0.25 mi2 
or 160 acres).  During simulations, the position 
(grid cell) of each individual was tracked, and 
deer were anchored to specific home ranges, 
which could shift in response to winter feed-
ing.  Cary’s model was constructed to evaluate 
a series of specific management actions, on a 
very specific population inhabiting a well-
defined landscape.  Cary examined a variety of 
alternative transmission functions, and showed 
that “... many combinations of transmission 
functions, latency time, and transmission coef-
ficient were successful in reproducing the de-
tails of a cluster of CWD cases …”.   
 
     Based on existing data and assumptions on 
disease transmission and animal movements, 
the Cary model estimated the time of establish-
ment of CWD prior to observation (7 to 15 
years), and projected specific rates of spatial 
spread of the disease (1.6 to 3.7 miles per 
year).  Under a range of model assumptions, 
the Cary model concluded that harvest of suffi-
cient intensity to remove the majority of in-
fected animals prior to death by disease could 
effectively stem the spread of CWD, and per-
haps eventually result in disease eradication.  
Such specific conclusions could not be derived 
from the more general structure of the G-M 
model, but these conclusions also required as-
sumptions on animal and disease behavior that 
still need to be verified. 
 
Questions addressed / model predictions: 
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     A major challenge in modeling disease is determining the functional form of the equations that most 
appropriately represent disease transmission.  Until fairly recently, most disease models represented 
interactions between hosts and pathogens as random encounters, where the likelihood of contact was 
directly proportional to host density (McCallum et al. 2001), also called mass-action transmission (de 
Jong et al. 1995 propose alternate terminology).  This ‘random mixing’ model is generally described as 
a density-dependent (DD) transmission, and the rate of disease transmission increases with host den-
sity.  By contrast, another large class of models treats disease transmission as a function of the propor-
tion of infected individuals in the population (the disease prevalence) rather than host density.  This 
mode of transmission has often been described as frequency-dependent transmission (FD).  This dis-
tinction has implications for disease control (Anderson and May 1991; Lloyd-Smith et al. 2005a, b). 
 
     The choice of DD or FD disease transmission can lead to key differences in the behavior of models 
under some conditions.. A particularly important difference is that simple models with DD transmis-
sion exhibit a population threshold density, below which a disease cannot invade or persist (Anderson 
and May 1979). This model prediction is the theoretical basis for using population reductions be used 
to control or eradicate disease. 
 
     In contrast, the efficiency of disease transmission in FD models can remain high even when popula-
tion densities are low, and simple FD models generally do not exhibit a lower population threshold be-
low which disease fails to persist  (Getz and Pickering 1983).  FD models better represent disease 
transmission in social animals, where group size and contact rate between individuals is determined 
more by social behavior than by random encounters between individuals. Among published studies, 
FD models were most often used to model sexually transmitted diseases. 
 
     It seems likely that many diseases, including CWD, will exhibit behaviors consistent with DD 
transmission, at least at extremely high and low densities.  However, as Swinton et al. (2002) noted, 
predictions from DD and FD models are identical when host densities remain the same.  In addition, 
McCallum et al. (2001) concluded that there is little support for DD transmission among wildlife stud-
ies.  Field observations of CWD prevalence, and estimates of host density, are currently too imprecise 
to distinguish predictions from models with DD or FD transmission. 

     Nonetheless, Schauber and Woolf (2003) criticized Gross and Miller’s (2001) CWD model and 
model interpretations, focusing on the sole representation of FD disease transmission by Gross and 
Miller. Under conditions more relevant to management of cervid populations (i.e., moderate to high 
population densities and low to moderate disease prevalence), the behavior of models with DD and FD 
transmission will be indistinguishable when compared to field data.  We constructed a set of simple 
disease models suitable for simulating CWD to demonstrate this point. Following Anderson and May 
(1979), we represented a population as consisting of susceptible (S) and infected (I) individuals. In this 
case, a S individual has not been infected and is neither influenced by disease nor can they transmit 
disease. Animals infected (I) with disease can transmit the disease and exhibit a higher death rate. 
 
     Following Anderson and May (1979, 1991), 
both population dynamics and disease dynamics 
can be represented by a simple set of equations:  
 
 
 

Box 3.1 Density Dependent vs. Frequency Dependent Transmission  
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with the variable definitions and initial values as shown in the table below. 

α = transmission rate, where: 
αDD = βI for density-dependent transmis-
sion,  
αFD = βI /N  for basic frequency-dependent 
transmission, and a form (αMM) proposed 
by McCarty and Miller (1998) and used by 
Gross and Miller (2001) in their CWD 
model. 
             
 
 
For the purposes of the simulations, pa-
rameters are per year and as above. 
 
To control population size, density de-
pendence in reproduction was represented 
in the form of 1-(N/K), thus the final equa-
tions are: 
 
 
    
 

  No field studies have unambiguously 
documented the existence of host popula-
tion thresholds (Lloyd-Smith et al. 2005a).  
While the existence of a lower population 
threshold is of theoretical interest, many 
models of wildlife disease exhibit very 
similar behavior over a broad range of host 
densities.  Field observations from free-

Box 3.1 Density Dependent vs. Frequency Dependent Transmission  
(continued from last page) 

 

Comparison of (A) prevalence and (B) population size 
for density dependent, density independent, and 
McCarty and Miller (1998) density dependent functions 
of CWD transmission rates. 
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Parameter Initial value Description 
b 0.4 Offspring per individual per year 
α   Transmission rate (see functions below) 
m 0.10 Proportion of population dying each year 

μ (fit) Proportion of infected individuals dying from disease each year 
β (fit) Transmission parameter (see functions below) 
S 800 Number of susceptible animals 
I 10 Number of infected animals 
N 810 Total number of animals (S + I) 
K 2000 Number of animals where birth rate is zero (density-dependent population parameter) 
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* Note: vertical transmission rate (e) was set to 
zero and hence eliminated from the above equa-
tions. 
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1. Predicts disease dynamics, (e.g., rates of 
change in infection and duration of epi-
demic) within a population through time. 

2. Predicts effects of population sex and age 
structure on disease dynamics. 

3. Predicts effects of control strategies, which 
may include test and cull, population re-
duction, habitat manipulation, harvest 
strategies, and/or vaccination. 

4. Predicts effect of individual variation on 
factors such as genetic resistance, transmis-
sion rates, and movement. 

5. Predicts effects of spatial structure of the 
environment on disease transmission and/
or persistence. 

6. Predicts effects of social structure on dis-
ease dynamics and the effectiveness of 
control strategies. 

 
Data required: 
     The data required varies with level of detail 
and intent of the model. For a theoretical 
model, existing observations of population 
structure (e.g., proportion in observable age-
sex categories) and disease prevalence may all 
that is required.  For a highly complex model 
with population and spatial structure, detailed 
data on population age and sex composition, 
disease prevalence, and on animal movement 
and contact rates may be necessary before 
there is sufficient confidence in model results 
to influence management decisions. It is very 
easy to construct overly-complex IBMs.  Con-
siderable thought should be directed toward 
constructing simple, tractable models; that is, 
models with the smallest possible number of 
estimated parameters. 

Output: 
     Model outputs vary with model structure 
and level of detail, but virtually all IBMs will 
simulate population structure and disease state 
(e.g., susceptible, infected, infectious) through 
time for defined sex and age classes.  Model 
outputs will typically include harvest and treat-
ment variables, such as the number of animals 
vaccinated, tested and culled, or harvested.  
Outputs of spatially explicit models will in-
clude the location of all animals, which are 
usually used to estimate animal densities 
across the landscape.  Any other simulated 
variables of interest can also be produced, in-
cluding physiological state, genetic composi-
tion, and number of offspring.  These variables 
permit calculation of many other factors of 
ecological interest such as generation time, in-
dices of genetic diversity, gene flow rates, etc. 
 
General usefulness: 
     IBMs have proven to be highly useful for 
simulating a wide variety of situations in ani-
mal ecology.  They are routinely used in appli-
cations that share many characteristics that ap-
ply to CWD: where migration or dispersal of 
individuals is important to establishing new 
populations or transmitting disease, for simu-
lating changes in genetic composition, and for 
evaluating the consequences of behavioral dif-
ferences of individuals and species.  Grimm 
and Railsback (2005) provide many other ex-
amples.  Although run separately here, IBMs 
have often been run on top of a grid, where the 
environment is described by the attributes of 
the grid cells as is discussed in the Spatial Sto-
chastic Model section below.   

ranging populations are simply not adequate to distinguish dynamics produced by frequency- or den-
sity-dependent transmission over broad (realistic) ranges of host density.  Key differences in disease 
dynamics related to mode of transmission occur when host population density declines below the 
threshold in a DD model, and these dynamics have very important implications on the ability of a con-
trol strategy (especially population reduction) to eradicate disease.  Additional data on transmission 
dynamics are required to realistically evaluate the likely effectiveness of intensive culling as a manage-
ment strategy for CWD (Gross and Miller 2001, Schauber and Woolf 2003).  We encourage future 
modeling efforts evaluate the sensitivity of their results and conclusions to this assumption. 

Box 3.1 Density Dependent vs. Frequency Dependent Transmission  
(continued from last page) 
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Usefulness to CWD modeling and/or manage-
ment: 
     This approach has great potential and the 
first CWD models constructed were IBMs 
(Gross and Miller 2001; Cary 2004). The level 
of detail is easily varied to accommodate spe-
cies or site-specific characteristics. A draw-
back to using an IBM is that the models must 
be evaluated using numerical rather than ana-
lytical techniques, which can be quite time 
consuming.  Model evaluation should include a 
carefully conducted sensitivity analysis.  Com-
plex IBMs can generate very large quantities of 
output – sometimes measured in giga-bytes – 
in which case data reduction, analysis, inter-
pretation, and communication can be signifi-
cant challenges.   
 
     There are a number of CWD-specific ques-
tions that individual-based model are particu-
larly well suited to addressing.  For example,  

• How does individual variation in propen-
sity to disperse affect the efficiency of 
management activities to control CWD? 

• How do individual social behaviors (e.g., 
fidelity to a family or other social group) 
affect disease dynamics and CWD control 
strategies? 

• How does genetic variation in resistance 
to CWD affect disease and population 
processes, including changes in gene fre-
quencies, disease dynamics and popula-
tion growth and persistence? 

Early models of dis-
ease often assumed 
that the host popula-

tion was homogeneously mixed (Anderson and 
May 1991).  In other words, each individual 
was equally likely to contact every other indi-
vidual within a single unit of time.  Because 
this assumption obviously does not hold for 
many human or wildlife situations, many stud-
ies have used different methods of accounting 
for spatial or social structure (e.g., Swinton 
1998, Keeling 1999, Keeling and Gilligan 
2000a, b, Thrall et al. 2000, Park et al. 2001, 

Fulford et al. 2002, Hess et al. 2002, Keeling 
and Rohani 2002, Cross et al. 2004, Hagenaars 
et al. 2004). Network models represent a very 
flexible method of capturing different social/
spatial structures (Keeling 1999, Watts 1999, 
Newman 2002, Cross et al. 2004, Ferrari et al. 
2006).  Traditional models typically assume 
that an individual’s risk of infection depends 
upon the prevalence or density of infectious 
individuals in the local (or global) population.  
Network models, on the other hand, explicitly 
incorporate information about who is con-
nected to whom and then assess each individ-
ual’s infection risk according to the number of 
contacts they have with infectious individuals.  
These models have been primarily used for 
sexually-transmitted infections where the con-
tacts among individuals may be limited and 
variable.  The strength of the network model-
ing approach is its flexibility to represent a 
wide range of social or spatial structures.  Con-
tact networks may change over time, but due to 
the lack of empirical data on network structure 
and how it changes over time, most network 
models have been static (Keeling 1999, Watts 
1999, Read and Keeling, 2003).  Ferrari et al. 
(2006), however, illustrated how the contact 
network could evolve over time as individuals 
become infected and removed by a disease.  In 
particular, the most well-connected individuals 
are infected first, leaving a much more sparsely 
connected network of susceptible individuals 
that are less likely to be contacted and infected. 
 
     A matrix of pairwise contact probabilities 
often underlies these models.  This association 
matrix is filled with association indices (aij), 
which describe the amount of contact between 
individual i and individual j.  These association 
indices can then be multiplied by infection 
rates or probabilities to simulate the disease 
dynamics.  Keeling (1999), and Keeling and 
Grenfell (2000) used contact networks to ex-
tend SIR models to structured populations.  
They found that inclusion of spatial heteroge-
neity and social structure provided predictions 
of R0 that were more concordant with empiri-
cally derived estimates than models that ex-
cluded these factors. 
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     The study by Cross et al. (2004) was pri-
marily for heuristic purposes, but to our knowl-
edge, is the only study in a wildlife system to 
use a dynamic network modeling approach 
based on associations between individuals 
from different population groups (Figure 3.3).  
The study showed that the dynamic properties 
of the network were particularly important for 
acute infections where the disease may go ex-
tinct within a local group prior to any connec-
tions forming between groups.  For chronic 
diseases like CWD, the network structure con-
necting different groups may be of minor im-
portance because disease persists for a long 
time relative to the frequency of new connec-
tions developing between groups.  Conse-
quently, disease could readily move from one 
group to another regardless of the network 
structure.  The major hurdle to applying this 
approach is the difficulty of estimating associa-
tions between individuals and then scaling 
those estimates up to create an appropriate net-
work structure that accurately reflects the en-
tire population of interest. 
 
     Spatial heterogeneity or social structure in a 
population will reduce the spread of a disease 
when the number of long-distance connections 
is relatively low.  The existence of either factor 
violates the assumption of homogeneous mix-
ing and this invalidates the estimation of R0 by 
many epidemiology models.  If populations are 

not homogeneous, then theoretical estimates of 
R0 exceed, often greatly, the observed R0 
(Keeling 1999).  R0 is often a very poor predic-
tor of disease invasion in spatially or socially 
structured populations where the local group 
size is small (Figure 3.4) (Ball et al 1997, 
Cross et al 2005a).  Even if R0 is high and the 
disease easily invades the local group of indi-
viduals, R0 does not inform us about the likeli-
hood of continued spread of the disease to 
other groups.  Group-to-group transmission of 
a disease depends upon the movement rate of 
hosts and parasites and the persistence of the 
parasite within the local group (Cross et al 
2005a, b), assuming no environmental trans-
mission. 
 
Questions addressed / model predictions: 
1. Predicts R0 and Rt and ensuing disease dy-

namics (speed and duration of epidemic) 
within a population through time. 

2. Estimates effects of population structure on 
disease dynamics during the duration of the 
infection. 

3. Indicates “core groups” that are likely to 
harbor disease and where management ef-
forts may be focused. 

 
Data required: 
1. Estimates of interconnectedness or associa-

tion of individuals or small groups, such as 
territory members, (i.e., population struc-

 

Figure 3.3.   Network graphs of African buffalo association data for (A) November 2001 through Octo-
ber 2003 and (B) May 2002.  Balls represent radio-collared buffalo and lines indicate that two indi-
viduals spent some portion of the time interval within the same group. Note that the data collected over 
a short window of time indicates that one herd was completely separated from the others (B).  Over the 
course of the study, however, movement among herds creates a well-connected network (A).  Figure 
from Cross et al. (2004).  
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Scale-dependent approaches to modeling spatial epidemiology of chronic wasting disease 

Approaches to Fine-Scale Modeling 59



ture), preferably at each time step of inter-
est. 

2. Infection status of study individuals 
(susceptible, infected, or recovered) at each 
time step of interest. 

 
Output: 
1. Predicts total number of individuals that 

will become infected during the course of 
an epidemic and number of individuals in-
fected through time (time trace of the epi-
demic). 

2. If data is collected through time, estimates 
of variance in population structure. 

 
General usefulness: 

     This approach has great potential because of 
its flexibility to simulate many different spa-
tial/social structures.  However, its utility is 
likely to be limited in many wildlife disease 
systems by the lack of individual data on asso-
ciations between individuals.  Continued im-
provements in radio-tracking and GPS technol-
ogy will make these data more available, but 
several questions remain that limit the general 
utility of contact network modeling.  This ap-
proach can uniquely address questions such as: 
“How do we efficiently sample a network?”  
Then, given that sampling, “How do we scale 
up the sample so that it represents the entire 
network of interest?”  To the authors’ knowl-
edge, these questions, crucial to network mod-

Figure 3.4. Mean and standard deviations of the number of infected individuals over 50 runs of the 
disease model using monthly association data from the entire study period (red circles), 2002 (black 
triangles), 2003 (white squares), or a mean-field model (blue circles) where all individuals were con-
nected but the monthly force of infection was the same. All simulations used a transmission coefficient 
ß of 0.03 and a recovery probability γ of 0.1.  Figure from Cross et al. (2004).  
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eling, have not yet been answered for any hu-
man or wildlife disease system. 
 
Usefulness to CWD management: 
     Given the potential for environmental trans-
mission and chronic nature of CWD, network 
modeling may be of limited utility for CWD 
management.  In the case of CWD it will be 
very difficult to define who contacts whom, 
particularly when the infectious agent may per-
sist in the environment for several years 
(Pálsson 1979, Miller et al. 2004).  When envi-
ronmental contamination is significant, the net-
work of contacts between live individuals may 
be far less important in determining disease 
dynamics.  

Spatial sto-
chastic models 
are called spa-

tial because each individual is explicitly lo-
cated in space, usually on a grid cell represent-
ing a small (e.g., territory) to large (e.g., 
county) area, and stochastic because rules of 
movement and vital rates are chosen randomly 
from a distribution or bootstrapped from the 
data.  Spatial stochastic models can operate at a 
variety of scales; at a landscape scale space 
may represent the summary of disease cases or 
prevalence throughout an area, such as a wild-
life management unit, or for an entire popula-
tion (for details, see the landscape-level section 
on cellular automata models).  However, at a 
fine scale, grid-based spatial stochastic models 
are used to model disease epidemiology within 
a single population, or in a relatively small 
area, such as winter range.  Grid-based spatial 
stochastic models can incorporate characteris-
tics of other model types, and the size of grid 
cells can be defined to represent an area that 
might contain one or a few animals (perhaps a 
family or social group), or an entire popula-
tion.  At the fine scale the data is usually more 
intensive and at finer resolution.  Birth and 
death rates, gene frequencies, and rules for 
movements between cells are often required, 

while at larger scales data such as time of first 
infection in an area can suffice.  The question 
of interest and biology and ecology of the rele-
vant animals dictate the scale of the model.   
 
     More complicated grid-based models can be 
designed to directly ingest information from a 
GIS to characterize cell properties that can in-
clude elevation, vegetation type, food avail-
ability, or cover.  These attributes can then be 
used to estimate habitat quality or the ability of 
areas, represented by cells, to support growth 
or persistence of organisms.  Grid cells can be 
organized into multi-cell units to represent ter-
ritories, and population densities based on ar-
eas (e.g., contiguous grid cells or ‘patches’) 
that contain a suitable mix of habitat types. 
Models to simulate population processes (e.g., 
birth, death, movement, etc.) and disease dy-
namics are run over the grid of cells, and suit-
able metrics can be extracted at any desired 
level – by cell, groups of cells, across a given 
area, or for the entire population.  Model re-
sults can be interpreted as non-spatial (e.g., 
total number of individuals), but the strength of 
the approach is to investigate the effects and 
consequences of spatial patterns or heterogene-
ity.   
 
     Cary’s (2004) CWD model is an example of 
a spatial stochastic model.  However, because 
it was described in detail in the IBM section 
we do not discuss it here.  Instead, we discuss 
2 other spatial stochastic models used to model 
disease spatial epidemiology.  Smith and Har-
ris (1991) used this approach to evaluate the 
efficacy of different control strategies on the 
spread of rabies in urban foxes in a city in 
southern England.  They subsequently applied 
their model to several other cites in southern 
England.  They did not use underlying habitat 
or environmental factors to predict population 
density, but rather modeled a range of typical 
fox densities based on data from similar areas 
in southern England.  Although this model was 
spatial, it was not explicit in that fox densities/
territories were not related to particular physi-
cal locations.  Fox territories were represented 
by an appropriate number of grid cells; territo-

Scale-dependent approaches to modeling spatial epidemiology of chronic wasting disease 

Approaches to Fine-Scale Modeling 61



ries were smaller at high densities and larger at 
low densities.  Similar to a cellular automata 
approach, for every time step the density of 
foxes in and near each cell determined disper-
sal rules, probability of encounter, and home 
range size at the next time step.  These model 
outputs were then used to calculate the number 
of foxes infected with rabies and ultimately to 
depict the spatiotemporal dynamics of the dis-
ease under various control strategies.  Note that 
rules were not static, but they varied with fox 
biological season. 
 
     In their model of the spatial dynamics of 
parapoxvirus disease in red and grey squirrels, 
Rushton et al. (2000) provide a good example 
of the nexus of an explicit spatial and individ-
ual based model approach.  In this spatially 
stochastic model, the landscape was repre-
sented by 25 m2 cells, where each cell was 
classified by proportion of different habitat 
type that was relevant to squirrels.  Remote 
sensing data was used to define the habitat type 
of each cell, for a particular location in Eng-
land, making this an explicitly spatial model.  
From the amount of contiguous habitats, po-
tential densities of red and grey squirrels were 
calculated, and then dispersal and competition 
rules determined the relative densities of the 
two species for each cell or group of cells.  An 
individual based epidemiologic model was run 
on top of this spatially explicit population 
model in which population density determined 
rates of encounter with infected individuals 
and the likelihood of becoming infected.  
These dynamics predicted the number of in-
fected individuals of each species, for each cell 
and time step. 
   
     Because the class of spatial stochastic mod-
els includes models that are very general to 
those that are highly detailed and complex, 
models of this type can be used to address a 
huge range of questions.  The level of detail, 
spatial and temporal resolution, and inputs and 
outputs can be adapted to the specific ques-
tions of interest.  Because this class of models 
includes such a broad range applications, we 
do not address these categories below. 

General usefulness: 
   Spatial stochastic models are useful for 
evaluating population dynamics where spatial 
heterogeneity is important.  In general, they are 
used for scenario, or ‘what-if’, analyses be-
cause the amount of data required to accurately 
estimate model parameters usually exceeds 
what is available.  Consequently, error propa-
gation is a serious issue, and confidence inter-
vals on outputs may be so large that estimates 
are not useful in themselves. The primary 
value of highly detailed spatial models is usu-
ally the ability to compare the relative value of 
various management scenarios.  Any model 
validation that does occur is usually at the 
scale of “was the disease present in this group 
of cells or not”, with observed values com-
pared to predicted values.  Finally, it is rela-
tively easy to construct grid-based spatial mod-
els using off-the-shelf software. 
 
Usefulness to CWD management: 
     Spatial stochastic models are useful for 
modeling CWD and evaluating management 
strategies where adequate data exists.  Cary 
(2004) used a grid-based representation, over 
which individuals moved, to simulate CWD in 
a Wisconsin landscape.  For CWD, different 
movement rules or transmission functions 
could be included in a spatial stochastic model 
and results compared to observed patterns of 
prevalence.  This type of approach may pro-
vide insight into the function and influence of 
these types of factors at the scale at which ade-
quate data could be collected. 

     Individual-based models (IBMs) will 
clearly contribute to our understanding of the 
dynamics of CWD and they will likely play an 
increasingly important role in modeling a wide 
variety of diseases.  We thus present this as a 
focal method for fine-scale modeling of CWD.  
As described above, the range of problems that 
can be addressed by IBMs is vast, and this 
translates into a similarly large range in the 
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level of detail and complexity that can be in-
cluded in any particular model. 
 
     We describe the general stages or tasks that 
a ‘typical’ IBM project will require.  While 
these steps are described as if they are accom-
plished sequentially, model development is 
rarely a linear process.  One needs to simulta-
neously consider model objectives, the types 
and quality of data available, and there is usu-
ally a need to continuously evaluate model ob-
jectives, model structure, and model perform-
ance.   
 
Step #1: Define model objectives 
     The first stages of model development are 
the same for virtually all models, including 
IBMs.  Step one is to clearly define the objec-
tives for the modeling exercise.  Model objec-
tives need to articulate the questions that must 
be addressed, features that are desirable, and 
the scales of space and time that are relevant to 
the questions.  Will the model be used to sup-
port decisions in a specific management area, 
or is the primary use of the model to under-
stand more general system behaviors?  What 
data are available to estimate model parame-
ters, and to compare to model results?  The an-
swers to these questions will help determine 
model structure and the required types of 
model outputs.  At this stage, it is usually im-
portant to consider the tradeoff between model 
parsimony and realism, and the position along 
this gradient will likely be constrained by the 
availability of data. 
 
     Common uses for IBMs are to compare the 
relative consequences of competing manage-
ment actions, which can include factors that 
might affect disease transmission or preva-
lence.  One may wish to examine the potential 
effects of supplemental feeding in harsh years, 
habitat manipulations, harvest regimes, or test-
and-cull of diseased animals.  The main pur-
pose of modeling may be to determine the like-
lihood of achieving a specific management 
goal or target, or to project population changes 
or prevalence rates over time and compare re-
sults to those in the absence of disease man-

agement. If the intent is to evaluate manage-
ment actions, the best objectives are quantita-
tive, specific, time-bound, and results are re-
flected by variables that can reasonably be 
simulated by an IBM and measured and com-
pared to field observations.  In the case of 
CWD, models can be constructed with specific 
objectives (1) to evaluate whether our hypothe-
ses about the epidemiology of CWD, as codi-
fied in mathematical equations, were consistent 
with observed disease dynamics (Miller et al. 
2006), and (2) to investigate the likely conse-
quences of typical actions to control disease 
(e.g., Gross and Miller 2001; Cary 2004). 
 
Step #2: Define model experiments 
     After the key objectives for the model are 
identified, a related set of model simulations 
should be defined.  For most IBMs, these 
model ‘experiments’ will consist of scenarios, 
based on input variables that define the initial 
model conditions and the ‘treatments’ that are 
to be applied. The universe of potential model 
scenarios for any IBM is huge and one must 
define a limited number of experiments that are 
to be conducted, and the analyses that will be 
used to evaluate results. For IBMs of CWD, 
model experiment scenarios might include the 
proportion of a population examined each year 
in a test-and-cull program (say, 10%, 25%, 
50%, 75%, and 100%), or the harvest rates of 
adult does and bucks.  Because ‘treatments’ are 
usually nested and crossed, the potential num-
ber of experiments can rapidly become unman-
ageable.  Thus, one should start with clearly 
defined and listed scenarios. 
 
Step #3:  Develop conceptual model 
     As early as possible, the modelers should 
develop a conceptual model of the entire sys-
tem to be simulated (Jackson et al. 2000).  A 
conceptual model generally consists of one or 
more diagrams of the system, and a narrative 
that describes key processes and functions.  
Development of the conceptual model usually 
helps all involved to more fully identify, ar-
ticulate, and understand what processes and 
functions the model needs to include, and, 
more importantly, what can be left out. In the 
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process of constructing a conceptual model, 
knowledge gaps are almost always identified 
as well as parts of the IBM most likely to be 
problematic.  When developing the conceptual 
model, it is helpful to very carefully document 
potential sources of information that can in-
form model construction and evaluation, from 
published and other sources.   
 
     Many problems with simulation models can 
be traced to errors in the scheduling of model 
events.  A common error is to produce outputs 
at an inappropriate time for comparing to field 
observations.  For example, errors in model 
evaluation can occur when observed preva-
lence rates of CWD are estimated from animals 
harvested in the fall, but the model produces 
prevalence estimates just after birth, a time 
equivalent to late spring. A well-constructed 
and detailed conceptual model can help avoid 
these sorts of errors. 
 
     In general, the model development process 
is to first implement a very simple host demo-
graphic population model that includes simple 
functions for birth and death, as well as an ap-
propriate level of detail on the individuals in 
the model (typically, the sex and age of each 
individual).  For CWD, approximate vital rates 
can readily be obtained from the literature for 
deer (and elk and moose), and population per-
formance of the IBM can be compared and 
calibrated to observations.  Once the basic 
population model is functioning, more detailed 
processes can be implemented.  Harvest and/or 
density-dependent reproduction (and perhaps 
mortality) is typically added next to restrict 
population size.  After this, disease control 
treatments, genetic inheritance, movement, in-
fection dynamics, or other more complex func-
tions may be incorporated. Additional species 
may be added so that predation (selective or 
random) can be simulated, or animal-habitat 
interactions may be incorporated.  Regardless 
of which features are implemented, it is critical 
to very carefully examine model performance 
as each new function is added. 
 
 

Step #4: Estimate model parameters 
     Throughout the process of model develop-
ment, the process of parameter estimation will 
usually be going on simultaneously. The sci-
ence and art of parameter estimation is well 
beyond the scope of this handbook; Hilborn 
and Mangel (1997) provide an outstanding in-
troduction to the subject.  
 
Step #5: Validate model 
     Once the model is running, robust, and ap-
pears to be operating correctly, it is important 
to conduct a thorough verification process be-
fore proceeding with what are likely to be 
time-consuming model experiments.  Because 
most IBMs incorporate both stochasticity and 
complex interactions, model verification can 
be a difficult and time-consuming process. In-
terested readers should refer to examples of 
IBM and more comprehensive treatises (e.g., 
DeAngelis and Gross 1992; Grimm and Rails-
back 2005). 
 
Step #6: Run model experiments 
     For most models, an almost infinite number 
of model experiments could be conducted.  It 
is necessary to carefully prioritize a limited 
number of model scenarios that will effectively 
address the management or heuristic questions.  
Even with a limited number of scenarios, IBMs 
are usually capable of producing huge quanti-
ties of model output.  A core challenge is to 
reduce and summarize model outputs, and to 
develop graphics or other summaries that con-
cisely and effectively communicate results to 
key audiences.  The analysis and communica-
tion challenges posed by output from IBMs are 
usually underestimated.  

     There are several key assumptions often 
made in modeling analyses at the fine scale 
that, in part, determine model results and con-
clusions.  Of particular importance to disease 
control and management is the relationship be-
tween transmission and host density and/or 
populations size (McCallum et al. 2001, 
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Schauber and Woolf 2003).  There are few data 
available to estimate the relationship between 
host density and CWD transmission, or other 
factors thought to significantly influence trans-
mission of CWD in free-ranging populations.  
Data from Caley et al. (1998) and Joly et al. 
(2006) provide data sets suitable for estimating 
or inferring changes in contact with variation 
in host density.  Because data on transmission 
rates are typically sparse, modeling analyses 
are often forced to assume a particular relation-
ship between host density and transmission 
rates (Box 3.1).  With respect to CWD, key 
differences in disease dynamics result from the 
assumed mode of transmission when host 
population density declines below the thresh-
old, and these dynamics have very important 
implications on the ability of a control strategy 
(especially population reduction) to eradicate a 
disease. Our current understanding of CWD 
transmission in free-ranging populations is not 
adequate to unambiguously distinguish dynam-
ics produced by frequency- or density-
dependent transmission over broad (realistic) 
ranges of host density and disease prevalence.  
Recent studies (Joly et al. 2006) observed pat-
terns of CWD prevalence consistent with den-
sity-dependent disease transmission, but the 
relative roles of different transmission modes 
are unknown. Additional data on this relation-
ship are critical to determining the likely effec-
tiveness of management strategies for CWD 
(Gross and Miller 2001, Schauber and Woolf 
2003), and we encourage future modeling and 
field efforts to better understand the epidemiol-
ogy of CWD and to evaluate the sensitivity of 
model results to transmission functions. 
 
     In addition, several studies suggest a strong 
role of an environmental reservoir of infection 
for CWD (Miller and Williams 2003, Miller et 
al. 2004, Miller et al. 2006).  This environ-
mental reservoir should be considered in SIR-
type models of CWD as well as several of the 
other modeling methods we discuss in this text.  
To do so requires adding an addition compart-
ment or variables to track the amount of infec-
tious material, which could be increased by the 
presence and death of infectious individuals,  

and decreased by the degradation of the prion 
proteins over time.  The inclusion of an envi-
ronmental reservoir of CWD can have impor-
tant implications for the effectiveness of differ-
ent management strategies and the duration 
required to achieve management objectives.   
 
     Finally and most importantly, demographic 
data for CWD infected versus uninfected free-
ranging deer are needed for all methods operat-
ing at the fine scale.  It is at a fine scale that the 
basic biology of CWD transmission and its 
true effects on the vital rates and dynamics of 
deer populations will be revealed.  Conse-
quently, field studies designed to estimate sur-
vival and fecundity rates of CWD infected and 
uninfected deer are needed to ultimately deter-
mine the effect of CWD on population growth 
rate.  This, along with field studies of transmis-
sion dynamics, including effects of environ-
mental contamination and social structure, are 
needed to determine the spatial epidemiology 
and functions of transmission of CWD within 
and between deer populations.  Although we 
chose IBMs for the focal approach, data needs 
outlined here will support most of the methods 
in this section.  Used individually or together, 
compartment models, IBMs, and spatial sto-
chastic models are all needed to fully under-
stand the nature of the spread of CWD and its 
ultimate effects on deer population dynamics. 
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