
     We consider the term regional-scale to de-
scribe large areas; large enough to be relevant 
to multi-jurisdictional (e.g., multi-state or 
multi-providence) management efforts and re-
gional description of CWD epidemiology.  Re-
gional-scale epidemiology focuses on the bi-
otic and abiotic factors that influence the ob-
served spatial pattern of a disease, and its 
spread between populations (see Hess et al. 
2002) or across large areas.  At the regional 
scale, data are generally summarized by 
county, wildlife management unit, or other 
relatively large areas, such as a state or provi-
dence.  Data collected typically include time to 
next case (rate) or counts of positive and nega-

tive samples within a given area (area is also 
called “tract” in epidemiology literature).  For 
a region, major goals include evaluating bio-
logical and ecological risk factors and predict-
ing high-risk areas.  At this scale, researchers 
and managers also attempt to identify likely 
corridors of disease spread and potential barri-
ers that could be used to arrest proliferation. 
 
     From a regional perspective, an introduced 
wildlife disease may appear as a point source 
with diffusion (Figure 1.1), as observed for 
bovine tuberculosis in white-tailed deer 
(Schmitt et al. 1997, Hickling 2002) in Michi-
gan, USA, and raccoon rabies in the northeast-

Approaches to Regional-Scale 
Modeling  

Chronic wasting disease samples from the Western United States  region (2000-2005).  
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ern USA (Jenkins and Winkler 1987, Moore 
1999).  Established epidemics may show a dif-
fusion wave front, as seen in fox rabies in 
Europe (Kallèn et al. 1985, Smith and Harris 
1991), or multiple point sources, as seen in an-
thrax epidemics in African ecosystems (Prins 
and Weyerhaeuser 1987).  Although a regional 
view of an epidemic may suggest diffusion 
across a landscape, finer resolution may reveal 
a more patchy distribution and heterogeneity in 
the rate of spread.  For example, the pattern of 
raccoon rabies in Pennsylvania, USA, ap-
peared consistent with simple diffusion when 
viewed from a large, geographic perspective. 
Subsequent analyses, however, revealed areas 
of slow spread (barriers), high prevalence ar-
eas, and rapid local spread (corridors) that did 
not conform to simple diffusion model predic-
tions (Moore 1999).  Predictions at the re-
gional-scale can be useful to describe disease 
occurrence, prevalence, or spread in general 
terms or for political reasons.  Yet, patterns of 
disease spread at a biologically relevant scale 
may be poorly represented by values averaged 
over a large spatial area. 
 
     Spatial epidemiological models on a large 
scale are geared toward one of two distinct 
forms of disease: highly contagious infectious 
diseases that generate rapidly moving epidemic 
fronts, such as foot-and-mouth disease, or non-
infectious diseases, such as non-viral cancers 
or toxin related illness.  Because of the chronic 
nature of CWD infection in animals, the puta-
tive slow rate of transmission within popula-
tions, and the relatively slow rate of geo-

graphic spread, CWD epidemiology falls 
somewhere between these two rubrics and thus 
we describe approaches for both types of dis-
ease. 

Risk analysis is a 
term often used 
when evaluating ef-

fects of a known point-source (such as a power 
plant) or line-source (such as contaminated 
streams or rivers) that emits toxins or pollut-
ants relative to proximity to the source (Morris 
and Wakefield 2000).  Risk analysis, or risk 
assessment, also describes geographical studies 
in terms of spatial distribution of putative risk 
factors, and their relationship or correlation to 
disease risk (Briggs 2000).  Overall or total 
risk is the response variable, which can be a 
variety of functions, usually summarized in a 
map.  For example, risk could be a krigged sur-
face of prevalence or probability of infection, 
or a relative risk surface or odds-ratio surface.  
Risk can also be expressed qualitatively, where 
areas are described as having high, medium, or 
low risk.  The risk response surface could be 
course, wherein all risks are averaged over a 
cell, or continuous, such as for krigged data. 
The choice of a risk response variable and its 
spatial resolution depends on study goals and 
available data.   
 
     Diseases have multiple causes, and disen-
tangling the risk factors can be complex.  
However, this problem is analogous to other 
spatial predictive models and analyses are typi-
cally conducted in a GIS framework, in which 
environmental or ecological landscape charac-
teristics are used to predict presence 
(MacKenzie et al. 2006), distribution (Murwira 
and Skidmore 2005), abundance (Dunford and 
Freemark 2005), or other spatial traits, such as 
home range size (Anderson et al. 2006) of 
wildlife species.  Spatial data have frequently 
been used to link predictions about species dis-
tribution and abundance to habitat characteris-
tics, but it is less common to use this approach 
in predicting disease distribution or prevalence.  

Figure 1.1. Visual depiction of wave front phe-
nomena emanating from single (left) and multi-
ple sources (right). 
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Scale-dependent approaches to modeling spatial epidemiology of chronic wasting disease 
Perhaps this is because regionally-oriented risk 
models are not applicable to highly infectious, 
fast-spreading diseases, which have been the 
historical focus of spatial epidemiological 
modeling for regional scales.  Risk analyses 
are typically more appropriate for endemic dis-
eases that are spreading slowly, or not at all.  
In the case of a slowly spreading disease, one 
wants to be reasonably sure that absence of the 
disease is related to factors associated with the 
site (or individual) rather than it simply being 
farther away from the site where the disease 
was introduced.  Note, however, that in more 
sophisticated analyses, distance from the epi-
center and time since introduction could be 
included as covariates prior to investigating the 
effects of other variables.  Several groups have 
employed spatial risk models to predict the 
probability of disease, or disease-vector pres-
ence, based on environmental factors: tsetse 
flies (Rogers et al. 1996), Lyme disease (Allen 
et al. 2003, Schauber et al. 2005), human in-
duced disease of great apes (Sleeman 2005), 
and disease-carrying Ixodex ricinus ticks 
(Merler et al. 1996). 
 
Questions addressed / model predictions: 
1. Estimates the relationship between envi-

ronmental/ecological (abiotic and biotic) 
factors and disease risk. 

2. Potentially estimates mechanistic relation-
ships between disease and environmental/
ecological (abiotic and biotic) factors. 

3.  
Data required: 
1. If disease cases present themselves, such as 

cancer cases, then only spatial locations of 
the positive samples are required (note that 
“targeted” surveillance samples for CWD 
may fall in this category). 

2. Spatial coordinates of positive and negative 
samples are required if disease cases do not 
‘present’ themselves – such as for CWD 
cases. 

3. If any temporal aspect to the models, then 
the date samples were collected (as a proxy 
for date of infection of individuals. 

4. Spatial environmental/ecological (abiotic 
and biotic) data for factors of interest. 

Output: 
1. Estimates spatial variation in disease 

prevalence and/or risk. 
2. Estimates risk parameters, effect sizes, co-

variate effect sizes, and other relevant sta-
tistics for factors/variables affecting the 
probability of disease. 

3. Provides model selection statistics and the 
relative weight of different models/
variables. 

 
General usefulness:  
     Spatial risk models are potentially useful 
for non-infectious disease or diseases with low 
infection rates or slow epidemic fronts (i.e., 
relatively slow spread).  Because wildlife hosts 
are mobile, this approach is most applicable for 
diseases with short dormancy or latency peri-
ods.  Longer latencies would dilute the effect 
of some factors unless the risk factors were 
relatively constant and migration rates were 
relatively low (e.g., animals do not contact dis-
ease in one location and then move to another 
so that risk is unhinged from location of in-
fected animals), whereas short latency diseases 
can be more directly tied to risk factors.  Thus, 
ecological risk factors associated with short 
latency period are more readily identified.  
Spatial risk models could be used to test vari-
ous hypotheses about environmental and bio-
logical covariates and risk factors, as well as to 
identify potential areas of disease risk.  
 
Usefulness to CWD modeling and/or manage-
ment: 
     If relevant spatial data are available, risk 
analysis has high potential applicability to 
CWD modeling and management.  CWD could 
make use of a risk analysis approach, given the 
fact that geographical spread appears to be 
slow in nature (we find it where we look for it, 
and, at present, have seen no evidence of rapid 
or even moderate rate of spatial spread).  Sur-
veillance data would satisfy the three data re-
quirements, but availability of appropriate en-
vironmental and ecological spatial data would 
need to be assessed, collected, and evaluated.  
This approach could identify environmental/
ecological risk factors to potentially target for 
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management, as well as high prevalence and 
high risk areas to target management interven-
tion or other actions.  For example, a recent 
study found that prions bind with varying af-
finity to different soil minerals (Johnson et al. 
2006) and Farnsworth et al. (2005) found 
greater CWD risks in urban areas.  Risk analy-
ses could be used to predict how soil types and 
housing density may affect current and future 
hotspots of CWD, but the power of the analy-
ses would depend upon host movement, spatial 
scale of variation in soil type and the amount 
and resolution of available data.  

Micromaps repre-
sent a different para-
digm for graphical 

visualization of diseases (Box 1.1) compared 
to other common techniques such as chlorop-
leth maps (see Figure 2.6) or smoothed preva-

lence or risk surfaces (see Figure 1.7).  The 
chloropleth map, which uses either shading or 
color to differentiate the values from one re-
gion to another, is somewhat problematic as 
noted by Dent (1993) and Harris (1999).  The 
main issue is the color representation of con-
tinuous data, which usually necessitates the 
conversion of continuous data into discrete in-
tervals and going from infinite color gradation 
to a limited number of colors (Symanzik and 
Carr 2007). Symanzik and Carr (2007) provide 
details on issues pertaining to region area size, 
the loss of information when making continu-
ous information discrete and the inability to 
represent confounding variables.  
 
     Given that most CWD data is georefer-
enced, and the response variables of primary 
interest are numerical, linked micromap plots 
can be used to order and present this multivari-
ate data in a contextual structure.  In addition, 
confidence intervals for variables, such as 
prevalence, can be shown on micromaps.  This 
is an important piece of information missing 
from chloropleth maps.  Thus, linked micro-

     A typical, but hypothetical, linked micromap plot showing the four key features of the technique 
(Carr and Pierson 1996).  Note: maps display simulated (not real) data.  The first (leftmost) panel, 
Maps, contains a map of the region.  The second panel, ID, provides the names of the geographical re-
gions (here, Region 1 through Region 10). The third through the fifth panels display statistical summa-

ries. These panels 
may represent 
many forms of sta-
tistical summaries 
including box-
plots, dot-plots (as 
shown), time series 
plots, confidence 
intervals, etc.  Sort-
ing the geographic 
regions based on 
the statistical vari-
able(s) of interest is 
the second feature. 
Sorting improves 
perception between 
consecutive panels 
from top to bottom 
of the display. The 

Box 1.1.  A CLOSER LOOK AT MICRO-
MAPS 
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maps plots are visual, but also are a representa-
tion of statistical data without certain short-
comings of the chloropleth depiction (Carr 
2001).  This provides benefits through (a) more 
meaningful representation of the data and, (b) 
communicating complex data sets in a manner 
that facilitates interpretation.   
 
      An ample set of templates are available that 
offer users considerable flexibility in data visu-
alization (Carr et al. 1998).  For example, the 
statistical panel of linked micromap plots can 
use any number of forms including box-plots, 
bar-plots, histogram-plots, or time series plots 
(Box 1.1).  These alternate statistical plots of-
fer additional avenues to represent the under-
ling structure of the data and examine patterns 
and relationships in the data.   
 
Questions addressed / model predictions: 
1. Depicts prevalence or other relevant dis-

ease statistics or information across space 

and time simultaneously. 
2. Allows queries of the underling structure of 

the data. 
3. Facilitates examination of patterns and re-

lationships in the data. 
 
Data required: 
1. Summary of positive and negative samples 

by polygon, such as wildlife management 
unit, county, etc., for each time step of in-
terest. 

2. The polygon from which each positive and 
negative sample was taken. 

 
Output: 
1. Prevalence maps that are linked across 

space and time simultaneously. 
2. Any statistics of interest linked across 

space and time simultaneously. 
 
General usefulness:  
     Linked micromap plots facilitate data sort-

third feature is the partitioning of the regions into perceptual groups of size five or less to allow the 
viewer’s attention to focus on explicit areas at a time. The fourth feature is color and location that links 
corresponding elements within the parallel sequence panels, i.e., the color red in the topmost panels 
relates to the geographic region in the Northeast of the map, the area name Region 5, and a red dot in 
each of the three statistical panels. The color red is reused in the next consecutive set of panels for Re-
gion 2, but there is no relationship between Region 5 and Region 2 as one might at first assume. Sim-
ply, there are not enough distinguishable colors to populate an entire display (with, say, 50 different 
regions); consequently, colors have to be reused in different panels.   
 
     The data displayed in statistical panels 1 and 2 show a strong positive association (the correlation r 
calculated as 0.99), expressed in the almost parallel behavior of the dots and lines representing the val-
ues for these two variables. In contrast, the statistical data in panel 3 and 1 (as well as 3 and 2) show a 
strong negative association (the correlation r calculated as –0.94 for 3 and 1 and as –0.92 for 3 and 2). 
This negative association is seen in the movement of the dots and lines in opposite directions for these 
variables. Moreover, the data in panel 3 show an unusual outlier, the value for Region 1. It is this out-
lier that considerably reduces the almost perfect negative association otherwise present in this data. 
Just a simple numerical calculation of r might not be able to reveal the influence of a single region on 
the overall relationship. 
 
     The map panels of the linked micromap plots from the previous page exhibit a strong geographic 
pattern: Highest occurrences with respect to the statistical panel 1 can be found in the North and in the 
East; lowest occurrences can be found in the West and in the South.  Additional features of linked mi-
cromap plots exist and are described in more detail in Symanzik and Carr (2007). 

Box 1.1.  A CLOSER LOOK AT MICROMAPS (continued from last page) 
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ing and division into smaller groups, which can 
be used to highlight specific spatial and tempo-
ral patterns.  Linked micromap plots provide 
considerably more information than would oth-
erwise be provided by a series of tables or an 
overall map representation (e.g., a chloropleth 
map) alone.  Viewers can navigate through the 
linked micromap plot to a place of interest in 
order to review prevalence and related statis-
tics, such as confidence intervals.  Thus, esti-
mates and the equally important variance of 
those estimates can be portrayed.  This is an 
advantage over typical spatial summaries 
wherein variance is not portrayed.  A second 
key advantage is that linked micromaps present 
statistical summaries and estimates in a spatial 
context. Unlike traditional graphical methods, 
linked micromap plots combine both explora-
tory analysis and traditional statistical graphics 
while maintaining the spatial context; this is 
important in CWD epidemiology because of its 
intrinsic spatial nature.  

 
Usefulness to CWD modeling and/or manage-
ment: 
     Linked micromaps provide highly useful 
visualization techniques for presenting tempo-
ral data from a large number of areas, such as 
wildlife management units or counties, along 
with associated statistics.  These plots can allay 
information overload and facilitate interpreta-
tion of large and complex data sets; this prop-
erty is extremely useful to managers who need 
to make timely decisions about CWD manage-
ment.  Linked micromap plots are a construc-
tive GIS representation coupled to a statistical 
visualization tool, which provide exploratory 
capabilities.  Linked micromap plots can be 
used to augment the presentation of CWD data. 
One example may be to micromap the results 
of a risk assessment model that would stratify 
areas based on risk to facilitate planning and 
mitigation practices. 

Cluster analysis re-
fers to a widely used 
set of grouping al-

gorithms that identify meaningful structures 
(often spatial for spatial disease epidemiology) 
in observed data. The conceptual approach in-
volves grouping data so that patterns within a 
valid cluster are more similar to each other 
than to patterns belonging to different clusters 
(Jain et al, 1999). The scope of problems ad-
dressed by cluster analysis includes many dis-
ciplines and has led to the development of a 
large assortment of clustering methods. No sin-
gle clustering technique is universally appro-
priate for uncovering the structures that may be 
present in high dimensional data sets. For ex-
ample, while many algorithms might get close, 
relatively few would be able to group the data 
as shown below (Figure 1.2). 
 
   Each clustering technique has its weaknesses 
and strengths, and these must be considered in 
conjunction with the goals of the analysis and 
the nature of the data. For example, many pa-
rametric clustering algorithms tend to find 

clusters of a particular shape (e.g., spherical), 
or of equal variance.  However, CWD surveil-
lance data from harvested deer are often dis-
tributed in elongated patterns (e.g., following a 
drainage or roadway, or within a valley.) and 
are not likely to yield clusters of equal vari-
ance.  The spatial irregularity of CWD surveil-
lance data reduces the choice of algorithms to 
those able to detect irregularly shaped clusters.  
Determining the distributional nature of the 
data set and selecting an appropriate clustering 
algorithm can be a time consuming and con-
fusing process. It is important to remember 
that there is no “best” method covering every 

Figure 1.2. Hypothetical cluster assignment of 
points (adapted from Jain et al. 1999).  
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situation. Accordingly, understanding 
strengths and weaknesses of each method is an 
important part of the clustering process. For 
example, clustering methods such as k-means 
and Ward’s minimum variance method (i.e., 
least squares criterion algorithms) tend to se-
lect clusters with roughly the same number of 
observations in each cluster. Algorithms based 
on nonparametric density estimation such as 
single linkage and density linkage are gener-
ally considered to be the least biased methods 
for selecting clusters (SAS Institute Inc., SAS 
OnlineDoc® 9.1.3, Cary, NC: SAS Institute 
Inc., 2002-2005). However, this comes at the 
cost of reduced power to detect clusters.  The 
specific goals of the analysis along with the 
knowledge of researchers and managers in-
volved will be integral to the selection of ap-
propriate clustering methods. 
 
     Clustering analysis at the regional scale can 
be used to determine the location of clusters as 
well as to answer questions about their signifi-
cance (Kulldorff and Nagarwalla 1995). For 
the clustering of disease data it is necessary to 
compensate for the uneven distribution of the 
sampled data (Kulldorff 1997). This is particu-
larly true with CWD surveillance efforts which 
vary widely across larger spatial scales. We 
advocate the use of spatial scan statistics for 

the clustering of disease data and cover this 
method in greater detail as the focal approach 
in the next section on landscape level methods.   
 
   While the use of scan statistics to detect clus-
ters at the regional scale follows the methods 
outlined in the next section (i.e. at landscape 
level), there is one important difference: the 
analytical unit used for spatial clustering. For 
CWD data across large regions, it is often the 
case that information about the exact location 
of all samples is missing. For example, hunter 
harvested deer, which contribute overwhelm-
ingly to CWD data sets, often lack geographic 
coordinates, but contain courser spatial infor-
mation (e.g., wildlife management unit, 
county, etc). To make the data spatially ex-
plicit the analytical unit is shifted from the in-
dividual points to predetermined polygons.  In 
other words, geographic coordinates (e.g., 
UTMs) are not required for individual CWD 
surveillance samples and data are effectively 
transformed into polygon count data (the num-
ber of positive and negative cases) with meas-
ures being concentrated at the central coordi-
nates of the polygons (Figure 1.3). Polygons 
can take many forms including agency units 
(e.g., wildlife or game management units), ad-
ministrative units (e.g., counties or postal 
codes), environmental units (e.g., water-sheds), 

 

Figure 1.3. (left) A set of hypothetical polygon “units” overlaid on a set of positive (red) and negative 
(black) cases. (middle) The centroid locations (black crosses) and id numbers for each  of the 32 poly-
gon units. (right) Associated table with counts of positive and negative cases along with centroid UTM 
coordinates. 

Scale-dependent approaches to modeling spatial epidemiology of chronic wasting disease 

Approaches to Regional-Scale Modeling 16



or even arbitrary grid cells or quadrats. Abun-
dant digital GIS data permits wide discretion in 
the choice of criteria for selection spatial units.  
 
     We note that aggregating into polygons, 
such as wildlife management units, may be the 
only reasonable choice if a most of the surveil-
lance samples lack geographic coordinates. 
The primary disadvantage of “collapsing” data 
from points to polygons is loss of spatial het-
erogeneity within the polygons. For example, 
the most basic polygon attributes  will contain 
only spatial information on centroids (or 
boundaries) and counts of the number of cases 
and non-cases within each polygon (Figure 
1.3).  If such “global,’ or ‘first-order’ cluster-
ing methods mask significant variation within 
polygons, the analysis should be supplemented 
with additional ‘second-order,’ or local, results 
based smaller spatial units, or  even the points 
themselves (if geographic data are available).   

Questions addressed / model predictions: 
1. Identifies high prevalence disease areas. 
2. Identifies regional-scale spatial disease 

pattern. 
3. Identifies potential spatial covariates to 

disease pattern. 
 
Data required: 
1. The polygon, which could be a large area 

for a regional analysis (e.g., wildlife man-
agement unit or county), from which each 
positive and negative sample was taken. 

 
Output: 
1. Assigns positive cases or areas to a particu-

lar cluster. 
2. Maps of disease clusters. 
 
General usefulness: 
     At the regional scale, the main strength of 
cluster analysis is that relatively course resolu-
tion data can be used to identify areas of high 
disease prevalence (at which management in-
tervention could be targeted).  Cluster analyses 
are exploratory, but can be useful for hypothe-
sis generation. Cluster analysis is a valuable 
initial step in examining the spatial epidemiol-

ogy of a disease. 
 
Usefulness to CWD modeling and/or manage-
ment: 
     Cluster analysis is a valuable descriptive 
tool for CWD surveillance data.  In general, we 
recommend that cluster analysis be conducted 
as a first step in the examination and evalua-
tion of large-scale CWD surveillance data. The 
usefulness of cluster methods for CWD is the 
same as described above in “General useful-
ness.”  All CWD surveillance data, georefer-
enced to point or area, can be used in cluster 
analysis.  This characteristic makes cluster 
analysis especially viable for multi-state data 
where some states collect sample coordinates 
and others do not.  
 
     If data are not collapsed into polygons for 
regional-scale applications, then all the spatial 
aspects of location-based cluster analysis need 
to be addressed.  In the next section on land-
scape-level modeling, we discuss issues rele-
vant to location-based cluster analysis in detail.  
In the section on Risk Analysis/Assessment, 
we consider the use of kernel density estima-
tors, a special case of cluster analysis, to gener-
ate a risk surface. 

The goal of the 
snapshot approach is 
to identify areas to 

which a disease is likely to spread and the rate 
of spread given a single snapshot of the loca-
tions and disease status of an area.  This 
method is appealing because it only requires 
one data collection effort, which is less expen-
sive and time-consuming than other ap-
proaches.  While Keeling et al. (2004) refer to 
this as a lattice-based, grid-based, or a cellular 
automata approach, the applicable area could 
be a county or wildlife management area rather 
than a square grid cell.  Pairwise status 
(infected:infected, infected:non-infected, or 
non-infected:non-infected) between each area 
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or cell are calculated, along with the distances 
between areas.  From the data, a function is fit 
to estimate how the risk of infection changes 
with distance from any positive cell.  There are 
four main assumptions required for this 
method: 1) the spatial sample is a representa-
tive sample of the disease on the landscape, 2) 
the spatial area is homogeneous, 3) the spread 
is not limited by boundaries (e.g., roads, rivers, 
or other boundaries to animal movement), and 
4) estimated parameters and mechanisms were 
constant during the formation of the spatial 
pattern.  If these assumptions are met, the rate 
of change in the pairs and the probability of 
areas to become positive are identifiable 
(Figure 1.4). 
 

Questions addressed / model predictions: 
1. Estimates rate of spread as a function of 

distance from an infected area. 
2. Estimates the probability that an area will 

become infected. 
 
Data required: 
1. Disease status of spatial areas, such as 

wildlife management units (presence-
absence). 

2. Centroid coordinates of the spatial areas 
(distances are calculated between area cen-
troids). 

3. Meet the 4 assumptions listed above. 
 
Output: 
1. Estimates the probability that an uninfected 

area will become infected. 
2. Estimates the rate of spread as a function of 

distance from an infected area. 
 
General usefulness: 
     The snapshot model is probably most useful 
at very broad or very fine scales, where the 
spread of an infection may be independent of 
temporary barriers.  That is, at very broad 

A B  

Figure 1.4.  (A) Pairwise status of infected:infected (Pxx) at distances of 2, 3, and 4 for a simple spatial 
distribution of positive CWD cases (red squares). Two cells joined by a black line represent a single 
pair at distance d. This pattern shows aggregation at intermediate distances and strong density de-
pendence at d = 1 (because no red squares are adjacent to each other). (B) Likely sites of future CWD 
infection based on the spatial structure from (A) across all possible distances.  Non-occupied sites are 
shaded (green) to indicate the deviation from the spatial structure in the observed snapshot. Dark 
squares represent the least change, and therefore represent sites that are most consistent with the ob-
served spatial pattern. If the system is in statistical equilibrium (stationary prevalence), then these dark 
cells represent the most likely areas for positive cases of  CWD. (Adapted from Keeling et al. 2004) 
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scales, many ‘local’ barriers are not of great 
interest or importance to modeling probability 
of infection.  At very fine scales, areas within 
or between barriers can be modeled.  The main 
strength of the snapshot method is that data are 
required at only one point in time, and the data 
are relatively straightforward to collect.  As a 
result, the snapshot method permits a rapid as-
sessment of where the disease may spread to 
next.   
 
Usefulness to CWD modeling and/or manage-
ment: 
     The data required, disease status of an area, 
and its centroid, are easily determined from 
CWD surveillance data.  However, some of the 
model assumptions may be difficult to meet.  
Surveillance sampling could be designed to 
meet the first assumption over large areas such 
as wildlife management units, but none of the 
remaining three model assumptions are realis-
tic for CWD epidemiology. In particular, the 
patchy distribution of hosts across the land-
scape is likely to be a strong confounding fac-
tor in a snapshot analysis.  Given the restrictive 
assumptions, the snapshot approach is unlikely 
to be useful for modeling and management of 
CWD.  However, the idea of using area-based, 
presence-absence disease data to model the 
probability of disease in an area (even when 
disease is not detected) is explored in more de-
tail below. 

If presence-absence 
data are collected 
and modeled within 

a mark-resight framework (MacKenzie et al. 
2002, MacKenzie et al. 2003), they can be 
used to estimate and monitor occupancy, colo-
nization, or extinction probabilities of a wild-
life species in a given area.  In this case, occu-
pancy is a proxy for abundance in large-scale 
monitoring studies.  Data collection for occu-
pancy estimation has the added advantage of 
requiring a less intensive field protocol and 
being potentially less costly as compared to 
methods for density or abundance estimation.  

Recent theoretical advances in the develop-
ment of occupancy models and their imple-
mentation have dramatically increased the vi-
ability of using this technique for landscape-
scale modeling (McKenzie et al. 2002, 
McKenzie et al. 2005, Royle and Dorazio 
2006. Freeman et al. 2007).  
 
     CWD data could be modeled using occu-
pancy modeling.  Probability of disease occu-
pancy in an area, such as a wildlife manage-
ment unit, could be estimated and modeled 
similarly to occupancy of a species in an area.  
Because CWD does not appear to spread rap-
idly, one could assume that over a short time 
frame, colonization and extinction probabilities 
are  sufficiently low to be irrelevant (although 
these may be the parameters of interest for dis-
eases with fast-moving epidemic fronts).  If 
one controls for sampling intensity (sub-
sampling could be used to do this) and preva-
lence is relatively constant over time, then oc-
cupancy probabilities could be used as a proxy 
for prevalence probabilities over the same area.  
The disadvantage of this method, however, is a 
great loss of resolution.  That is, prevalence 
could drop dramatically, but this drop would 
not be detected by an occupancy model.  Its 
main use would be for very large areas, such as 
multiple states, where it could be adapted for 
areas with sparse sampling and different sam-
pling protocols. 
 
     Similar to occupancy for monitoring wild-
life species, data collection would be far sim-
pler and less costly to collect compared to data 
collected to generate precise prevalence esti-
mates or a risk surface.  This approach readily 
lends itself to a model selection framework, 
similar to the risk assessment approach.  Hy-
pothesized environmental and ecological risk 
factors could be evaluated with respect to the 
probability of disease occurrence.  Occupancy 
models would be especially tractable for very 
broad scales, although it may be an important 
challenge to correctly identify the size of the 
areas sampled for disease “occupancy”.  The 
area should be large enough to be efficiently 
sampled, but small enough to capture the spa-
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tial heterogeneity of CWD prevalence (e.g., if 
you sample a large enough area, all areas will 
be positive) and to reflect the epidemiology of 
the disease and the use of space by hosts.  
 
Questions addressed / model predictions: 
1. Over a very broad scale, identifies areas for 

which the disease is present or absent. 
2. Identifies areas having a low probability of 

disease detection due to sampling schemes. 
3. Identifies environmental/ecological (abiotic 

and biotic) factors associated with the 
probability that the disease is present. 

4. Identifies environmental/ecological (abiotic 
and biotic) factors/covariates associated 
with the probability that the disease is de-
tected 

 
Data required: 
1. Disease status (presence or absence) of an 

area such as wildlife management unit. 
2. At least 2 years of data for each area. 
 
Output: 
1. Estimates probability of disease presence 

or detection in an area, such as a wildlife 
management unit or county. 

2. Estimates probability surface of disease 
occupancy using centroid of a given area. 

3. Estimates effect sizes (e.g., difference in 
disease presence between treatment and 
control areas, between species, etc.), and 
other relevant statistics for factors in 
model. 

4. If spatial environmental/ecological (abiotic 
and biotic) factor/covariate data were col-
lected, then estimates their importance to 
presence and detection. 

5. Provides model selection statistics. 
 
General usefulness:  
     If designed correctly, an occupancy ap-
proach is, potentially, a cost-efficient method 
to monitor status of disease presence over very 
broad spatial scales.  Methods to determine 
required sample sizes for predicted disease de-
tection probabilities and disease prevalence 
have been described (Samuel et al. 2006).  The 
method appears viable for highly infectious, 

fast-spreading diseases, as well as non-
infectious or slow-spreading diseases. Also, 
the binomial and multinomial mark-resight 
methods underlying the estimation of occu-
pancy probabilities explicitly estimate and ac-
counts for spatial covariance (McKenzie et al. 
2005).  The occupancy approach is attractive 
because it is simple compared to other methods 
that model spatial correlation.   
      
    Similar to risk assessment, occupancy mod-
els would be more applicable for diseases with 
short dormancy/latency periods than for those 
with long latency periods.  Environmental or 
ecological factors associated with short latency 
period, would be more readily identified be-
cause longer latencies may dilute the effect as 
evaluated in future time periods unless these 
factors were relatively constant and migration 
rates relatively low (e.g., animal stays in the 
place where the risk occurs).   
 
Usefulness to CWD modeling and/or manage-
ment: 
     Although occupancy models have not been 
used for disease modeling, they appear poten-
tially useful for initial modeling of CWD at 
regional or other broad scales.  Because rela-
tively little data is required to determine CWD 
‘occupancy’ status (i.e., is there one or more 
infected animals in an area?), most states have 
comparable data.  Differences in data collec-
tion protocols can make data incomparable and 
hamper prevalence estimation and use of other 
approaches (e.g., cluster analysis and risk 
analysis, based on risk surface).  The main 
drawback of occupancy modeling is a reduc-
tion in the resolution of biological inferences.  
That is, the output is probability that the dis-
ease is present, but it could be present at a very 
low prevalence or very high prevalence.  This 
reduced resolution in the output would dilute 
the ability to realistically evaluate spatial fac-
tors and covariates.  Again, choosing the cor-
rect spatial area over which to estimate disease 
presence or absence would be critical to reduce 
the loss of resolution. 
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Epidemic trees al-
low estimation of 
two primary values, 

R0 and Rt.  R0 defines the average number of 
secondary cases that arise from a single case at 
the start of a disease outbreak or epidemic.  Rt 
is the average number of secondary cases aris-
ing from a single infection during time = t.  
Traditional Susceptible-Infected-Recovered 
(SIR) models also estimate R0 based on a theo-
retical model.  The epidemic-tree approach is 
novel in that it is an empirical method of direct 
estimation of R0 from the history of the ob-
served cases (Haydon et al 2003).  The epi-
demic tree approach is contingent upon data 
that accurately tracks the historical progression 
of the disease, specifically the temporal path 
from initial case to subsequent cases.  
 
Questions addressed / model predictions: 
1. Estimates disease transmission rate (R0 and 

Rt) through time and space. 
2. Evaluates, retrospectively, the effectiveness 

of different control strategies; i.e., esti-
mates reduction of Rt for a control strategy 
instituted at a given location and time. 

3. Allows retrospective comparisons, sensitiv-
ity, and cost-benefit analyses of different 
control measures, different timing of con-
trol actions (relative to onset of disease or 
relative to season), and different control 
locations. 

4. Evaluates the influence of long-range trans-
mission events compared to short-range 
transmission. 

5. Identifies the best strategies available for a 
future outbreak or outbreak of similar dis-
ease. 

 
Data required (* indicates data not currently 
collected as part of any CWD surveillance 
program): 
1. Location of infected/infection. 
2. Putative date of start of infection.* 
3. Date a suspected infection reported.* 
4. Date when infection confirmed.* 

5. Viable rule set that ties subsequent cases to 
the case from which they originated.* 

 
Output: 
1. Estimates of Rt and its variance for specific 

time intervals and locations (estimates of 
rate of spread in time and space). 

2. Estimates of generation time = interval be-
tween infection and subsequent case aris-
ing from it. 

3. Estimates of reporting time = time between 
infection and subsequent reporting of case 
arising from it. 

4. Estimates of routes of spread. 
5. Estimates of rate of spread. 
 
General usefulness:  
     Epidemic tree modeling is good for highly 
infectious, fast spreading epidemics.  This 
method will underestimate Rt if all cases are 
not identified.  However, as long as Rt is not 
biased by area (e.g., bias could arise if fewer 
infections identified away from urban areas 
due to different detection probability, whereas 
all areas would be equally under-represented a 
relatively non-biased situation), this method is 
usable for comparing the effect of different 
management strategies on Rt.  Finally, for fast-
spreading diseases that may re-invade, the 
strategies gleaned from retrospective analysis 
could be applied to future invasions.   
 
Usefulness to CWD modeling and/or manage-
ment: 
     The epidemic tree approach is not useful for 
modeling spatial epidemiology of CWD be-
cause positive animals cannot be linked to an 
originating case.  Because CWD may be trans-
mitted indirectly through a prion-contaminated 
environment, there may be no specific origi-
nating case or location.  Also, it would be diffi-
cult to estimate a time of infection, since little 
is known about the course of disease in free-
ranging deer, or about potential individual 
variation in disease progression.  In addition, 
the timescale of CWD may be too long to take 
timely advantage of retrospective strategies.  
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     For the regional scale, we decided to pre-
sent 2 focal approaches, micromaps and risk 
analysis.  We present micromaps as a useful 
visualization technique to display data over 
large regions because they integrate spatial and 
temporal aspects of data.  This technique 
would be the first step to summarize and exam-
ine regional data, while risk analysis is a logi-
cal second step.  Risk analysis, at the regional 
scale, focuses on the two main questions: 1.) 
What are the significant CWD risk factors for a 
free-ranging mule deer population? and, 2.) 
Can we predict where CWD is likely found or 
will spread next?  We focus on mule deer for 
all focal approaches, but these approaches 
could be applied to white-tailed deer and elk.  
Note: we do not use real data or perform a de-
tailed analysis; our goal is simply to provide a 
general overview and illustrate the potential of 
these methods. 

 
Step #1- Generating Linked Micromap Plots:    
     After delineating game management unit 
(GMU) boundaries, linked micromap plots for 

the GMUs and the state of Colorado were cre-
ated using the S-plus statistical software pack-
age. The sample S-plus code for creating 
linked micromap plots is available at Dan 
Carr’s ftp site (ftp://galaxy.gmu.edu/pub/dcarr/
newsletter/micromap/).  
 
     For CWD in northcentral Colorado, we 
simulated a sample that was limited to only a 
few GMUs. Therefore, micromap visualization 
can consist only of those GMUs with sampled 
deer.  Prevalence and associated confidence 
intervals were subsequently plotted in a linked 
micromap representation.  
 
Step #2- Interpreting the Final Linked Micro-
map Plots:     
     Figure 1.5 shows a series of linked micro-
map plots for the GMUs sampled for CWD. In 
the first linked micromap (1.5.A), four vertical 
panels (columns) are linked by geographic lo-
cation, which is the GMU in this case. The 
map (panel 1) shows the boundaries for GMUs 
inside a CWD endemic area. The legend to the 
right of the map (panel 2) shows the GMUs 
designation with a dot in the linking color. The 
set of four graphs (panels 3 and 4) illustrate 
two statistical variables. In this particular ex-
ample, dot-plots represent prevalence for the 2 

A B 

 

 

Figure 1.5. Various micromaps for CWD from simulated mule deer data for northcentral Colorado. 
(A) CWD prevalence in 6 GMUs for 2002 and 2003.  (B) An example of portraying prevalence across 
space (6 GMUs) and time (2 years) with 95% confidence intervals.  Note: this is not real data.  See 
text for more detailed explanation  
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years in question, i.e., 2002 (panel 3) and 2003 
(panel 4). All corresponding micromaps, la-
bels, and statistical panels are linked by their 
colors. Note that three distinct colors are used 
to distinguish the GMUs within a particular 
micromap frame and are unique to that micro-
map. The GMUs are ranked according to simu-
lated prevalence of 2002 from highest to low-
est and are partitioned into two micromaps. 
The ranking is user-defined and could be 2003 
if desired, while the partitioning and number of 
micromaps are based on the number of geo-
graphical units to be represented (see Syman-
zik and Carr (2007) for details). While offering 
no interpretation of the CWD data, it is imme-
diately obvious which GMU had the highest 
and lowest prevalence in 2002.  The GMUs in 
the lower micromap panel show a decline in 
prevalence from 2002 to 2003, but still main-
tain the same ranking. GMU9 was markedly 
static between years with the highest preva-
lence.   
 
Step #3- Displaying and Interpreting Supple-
mental Statistical Information:     
     A further capability (i.e., supplementary 
statistical representation) of micromaps, dis-
played in Figure 1.5.B, is the addition of confi-
dence intervals as a component of the preva-
lence panel. The confidence intervals (panels 3 
and 4) represent the 95% lower and upper con-
fidence limits. The larger colored dots refer to, 
as before, the prevalence in each GMU. One 
can now appreciate the fact that the prevalence 
of each GMU are not quite the “true” (actual) 
prevalence and that the confidence intervals 
describe uncertainties of the estimates. More-
over, readers can also observe that GMUs 
where simulated prevalence was estimated 
from limited data versus ample data as signi-
fied by the width of the confidence interval.  
As an example, consider how GMU9, which 
had the highest prevalence in both years, com-
pares to GMU191. Upon initial examination of 
the prevalence information, it appears that 
GMU9 has a higher prevalence than GMU191. 
However, GMU9 has a wider confidence inter-
val indicating that the prevalence for GMU9 is 
less reliable. 

Step #1- Development of GIS Database:     
     Geographical risk modeling begins with the 
development of a GIS database that will be 
used to store, access, update, and model risk 
associated with a disease. Special attention 
should be placed on checking the quality, type, 
and spatial resolution of each data layer. Data 
quality is crucial to the modeling process and 
can have a significant impact on overall uncer-
tainty. For example, the layer with the coarsest 
spatial resolution typically constrains the spa-
tial resolution of the analysis to no less than 
that particular scale. For multi-state modeling, 
data for each risk factor must be standardized 
across the entire region. Because data often 
come from different sources, standardization 
may require reprocessing data to a common 
coordinate system or reclassifying categorical 
variables. This is an important process and 
maps of an individual risk factor can generate 
useful insights.  These maps can help identify 
influential variables and/or areas that are prob-
lematic to overall risk analysis.  
 
Examples of Potential Risk Factors: 
• Proximity to known CWD positive deer 

and/or elk based on surveillance locations. 
• Proximity to captive deer and/or elk facili-

ties (e.g., farms or hunting ranches). 
• Proximity to deer and/or elk feeding or 

wintering areas. 
• Proximity to deer and/or elk processing 

facilities. 
• Proximity to deer and/or elk research facili-

ties. 
• Proximity to taxidermy operations. 
• Historical intensity of sheep grazing and 

current sheep density. 
• Black-faced sheep density. 
• Proximity to known scrapie infected or ex-

posed sheep flocks. 
• Deer and/or elk movement corridors. 
 
Step #2 – Transforming the Data:  
     Variables usually require transformation to 
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a common format. GIS data can be stored as 
points, lines, polygons, or in raster format (2 
dimensional arrays where each cell, or pixel, 
contains a single values).  Raster data is well 
suited to modeling exercises such as risk 
analysis (Longley et al 2002). However, 
“rasterizing” data results in homogeneity 
within pixels (i.e., each cell is assigned a single 
value); therefore it is important to consider po-
tential interactions between resolution and the 
nature of the data being rasterized.  
 
     In the case of risk analysis, the ultimate 
goal is to generate a value that represents the 
risk in any given cell as a function of the risk 
variables. This often requires restructuring the 
data into more biologically meaningful terms. 
For example, captive cervid facilities are a 
known potential source of CWD exposure risk. 
Locations of these facilities are usually pro-
vided in the form of polygons or points, and 
each location will be represented as either pre-
sent or absent when transformed into a raster 
format. For each cell containing a facility, the 
entire cell is assigned a ‘present’ value, regard-
less of the size of the facility relative to the cell 
(e.g., the facility might be 5 acres, but the cell 
size could be 5x5 miles, or 16,000 acres – the 
entire 16,000 acres would be considered occu-
pied by the facility).  The real value of interest 
is how far any particular cell is from the near-
est game farm, and the estimated distance may 
depend substantially on the process used to 
standardize the underlying data. In cases where 
distance is the parameter of interest, the sur-
face data for that variable is expressed in terms 
of distance (Figure 1.6). 
 
Step #3 – Assigning Risk:  
    Risk is assigned to individual cells for each 
risk layer. The output is the result of applying a 
“risk” equation to each pixel, where each layer 
is a variable and the relative risk factors are 
coefficients between 0 and 1. The final map 
illustrates results from the equation. Figure 1.7 
shows a visualization for two variables which 
are considered to be important factors in the 
spread of CWD: proximity to existing cases of 
CWD and proximity to captive cervid facili-

ties.  Note that for a real data set, risk would be 
assigned to the predictor variables based on 
their importance in a spatially corrected regres-
sion analysis.  Techniques such as hierarchical 
partitioning (Chevan and Sutherland 1991), 
partial correlations (Cox 1985), and other 
measures such as variable importance in pro-
jection (Birkner and van der Laan 2006) can be 
used to determine variable weighting.  Once 
the variables are ranked, the risk model can be 

Figure 1.6. Transformation of rivers (top) 
from a linear feature to a raster data set 
(bottom). Each cell in the raster contains a 
value of the linear distance to the nearest 
river. The distance values increase as the color 
changes from red to yellow to blue.  
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used to forecast risk for areas where disease 
data have not been collected.  Where data on a 
predictor variable are not available, expert 

judgment may be used to assign relative vari-
able importance, with a corresponding reduc-
tion in confidence in the forecasts. 

Figure 1.7. (A) Hypothetical locations of two chronic wasting disease risk factors, positive chronic 
wasting disease cases (red points) and captive cervid facilities (black points).  Risk surfaces when (B) 
risk is weighted equally between proximity to chronic wasting disease positives and proximity to cap-
tive cervid facilities, (C) risk from proximity to captive cervid facilities is 10x that of the risk from prox-
imity to positive cases, and (D) risk from proximity to positive cases is 10x that of the risk from prox-
imity to captive cervid facilities. In (B-D) red represents a relatively high level of risk and yellow 
represents a relatively low risk.  The black grid represents large scale quadrats for visualization, while 
the surface is modeled at a much finer resolution. The surfaces in this figure were built from a 
4000x4000 cell lattice. 
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To highlight how important assigning relative 
risk weight to variables is to the overall risk 
analysis, we have provided three variations.  In 
the first case, we assign equal risk weights to 
the proximity to existing cases of CWD 
(weight = 0.5) and proximity to captive cervid 
facilities (weight = 0.5).  In the second case we 
assign 10 times the weight to the risk of prox-
imity to captive cervid facilities (weight = 
0.91) compared to proximity to existing CWD 
positives (weight = 0.09).  In the final case, we 
reverse the weighting and assign 10 times the 
weight to the risk of proximity to existing 
CWD positives (weight = 0.91) compared to 
proximity to captive cervid facilities (weight = 
0.09).  
 
Step #4 – Displaying Risk Output:  
     Step 4 involves delimiting areas of rela-
tively high and low risk based on the output 
layer. Typically isopleths of predetermined 
levels are shown in different colors allowing 
for a visual representation of the risk involved 
(See Figure 1.7). However, threshold levels 
can also be used to show areas above a set 
level of risk.  
 
Step #5 – Model Validation:  
     Model validation is an important part of the 
risk assessment process. Both internal valida-
tion and external model validation should be 
assessed, especially if management decisions 
are based on risk models. Internal (e.g., boot-
strapping) is the more straight forward proce-
dure as the data already exist. This can be con-
sidered a self-consistency check, as any sys-
tematic differences between the simulations 
and the data (upon which the model is based) 
indicate weaknesses in the model (Gelman et 
al. 2004). Internal validations tend to be overly 
optimistic about model performance because 
the data for modeling and validation come 
from the same data set and they are thus not 
independent. External validation provides a 
more reliable estimate of sensitivity 
(proportion of false negatives) and specificity 
(proportion of false positives). External valida-
tion compares the fit of model predictions to 
new data (Gelman et al. 2004).  For example, if 

CWD can be considered stationary and surveil-
lance patterns/intensity are consistent across 
time, then it may be possible to use temporal 
external validation, such as building the model 
from one year of surveillance data and testing 
it on data from subsequent years.  See Gelman 
et al. (2004) for a detailed explanation of 
model validation. 

     Although contagious, CWD appears to fall 
somewhere between the class of slowly spread-
ing diseases, such as rabies, and non-infectious 
chronic diseases, such as cancer or a pollution/
toxin induced illness.  CWD is similar to TB in 
that it spreads among individuals in a wildlife 
population by direct or indirect contact, and 
has a long latency period.  Existing epidemiol-
ogical models applied at a regional scale tend 
to fall into 2 categories: those more useful in 
representing infectious, relatively quick-
spreading diseases or those more useful for 
non-contagious, spatially static diseases.  We 
know little about the spread of CWD in the 
wild, and recently detected foci may result 
from increased surveillance sampling rather 
than spread.  Consequently, methods for non-
infectious diseases, such as cluster analysis and 
risk analysis, seem the most appropriate for 
spatial modeling and portrayal of CWD at a 
regional scale.   
 
     Thus, we chose risk analysis as the focal 
approach for large-scale modeling.  Cluster 
analysis is a similarly useful method, and we 
describe use of cluster analysis as the focal ap-
proach at the landscape level in the next sec-
tion.  In general, we recommend micromaps as 
a first step for describing CWD and communi-
cating patterns at broad scales.  For many pur-
poses, the next step is likely to be a risk analy-
sis. The utility of snapshot or occupancy ap-
proaches for analyzing CWD spatial epidemi-
ology is uncertain, and these approaches re-
quire further testing with CWD or similar dis-
eases.  We recommend that simulations (e.g., 
determining power to detect a specific change 
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in prevalence given different sample sizes) be 
conduced to evaluate their viability for CWD 
data at the regional scale.  Finally, we note that 
epidemic trees are inappropriate for evaluating 
CWD spread because these were developed for 
analysis of highly infectious, fast spreading 
diseases. 
 
     The data gaps for these methods are primar-
ily large spatial environmental and ecological 
data.  These data often exist, but usually they 
need to be compiled and standardized across 
jurisdictional boundaries, for the region of the 
analysis.  As noted in the focal approach, the 
quality, type, and spatial resolution of each 
data layer needs to be evaluated as part of the 
modeling process. The development of reli-
able, well-documented, spatial GIS-based lay-
ers of relevant biological and ecological factors 
will strongly promote CWD modeling efforts 
at the regional scale. 
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	gorithms that identify meaningful structures (often spatial for spatial disease epidemiology) in observed data. The conceptual approach involves grouping data so that patterns within a valid cluster are more similar to each other than to patterns belonging to different clusters (Jain et al, 1999). The scope of problems addressed by cluster analysis includes many disciplines and has led to the development of a large assortment of clustering methods. No single clustering technique is universally appropriate for uncovering the structures that may be present in high dimensional data sets. For example, while many algorithms might get close, relatively few would be able to group the data as shown below (Figure 1.2).

	Data required:

	Output:

	General usefulness:

	Usefulness to CWD modeling and/or management:

	Data required:

	Output:

	General usefulness:

	Usefulness to CWD modeling and/or management:

	     The data required, disease status of an area, and its centroid, are easily determined from CWD surveillance data.  However, some of the model assumptions may be difficult to meet.  Surveillance sampling could be designed to meet the first assumption over large areas such as wildlife management units, but none of the remaining three model assumptions are realistic for CWD epidemiology. In particular, the patchy distribution of hosts across the landscape is likely to be a strong confounding factor in a snapshot analysis.  Given the restrictive assumptions, the snapshot approach is unlikely to be useful for modeling and management of CWD.  However, the idea of using area-based, presence-absence disease data to model the probability of disease in an area (even when disease is not detected) is explored in more detail below.
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